Answer:
1/32v²sin2θ
Step-by-step explanation:
Given the expression r(theta) = 1/16v²sinθcosθ
According to double angle of trigonometry identity;
Sin2θ = sin(θ+θ)
Sin2θ = sinθcosθ + cosθsinθ
Sin2θ = 2sinθcosθ
sinθcosθ = sin2θ/2 ... **
Substituting equation ** into the question
1/16v²sinθcosθ = 1/16v²(sin2θ/2)
1/16v²sinθcosθ = 1/2×1/16v²(sin2θ)
1/16v²sinθcosθ = 1/32v²sin2θ
Hence using the double angle identity, the equivalent expression is 1/32v²sin2θ
Answer:
A
Step-by-step explanation:
So that is a 90 degree angle and there is an angle of 30. 30-90 is 60. 60 divided by 4 is 15. So thus the answer is A,15.
Answer:
(sqrt(x) +1)(sqrt(x)-2)
Step-by-step explanation:

Answer:
Figure 1
Step-by-step explanation:
Congruent shapes are shapes that share the same side lengths and angle measures. In figure 1, we see that all sides and angles are marked equal, thus both shapes are congruent. However, in figure 2, we clearly see that the sides of each of the triangles are different. Thus, the triangles in figure 2 are not congruent.
Answer:
We use Baye's theorem: P(A)P(B|A) = P(B)P(A|B)
with (A) being defective and
(B) marked as defective
we have to find P(B) = P(A).P(B|A) + P(¬A)P(B|¬A). .......eq(2)
Since P(A) = 0.1 and P(B|A)=0.9,
P(¬A) = 1 - P(A) = 1 - 0.1 = 0.9
and
P(B|A¬) = 1 - P(¬B|¬A) = 1 - 0.85 = 0.15
put these values in eq(2)
P(B) = (0.1 × 0.9) + (0.9 × 0.15)
= 0.225 put this in eq(1) and solve for P(B)
P(B) = 0.4