
We have to <u>evaluate</u> the given <u>expression</u>.

If we multiple both numerator and denominator by 1 - sin(x), then the value remains same. Let's do that.
![\rm = \sqrt{ \dfrac{[1 - \sin(x)][1 - \sin(x) ]}{[1 + \sin(x)][1 - \sin(x) ]} }](https://tex.z-dn.net/?f=%20%5Crm%20%3D%20%20%5Csqrt%7B%20%5Cdfrac%7B%5B1%20-%20%20%5Csin%28x%29%5D%5B1%20-%20%20%5Csin%28x%29%20%5D%7D%7B%5B1%20%2B%20%20%5Csin%28x%29%5D%5B1%20-%20%20%20%5Csin%28x%29%20%5D%7D%20%7D%20)
![\rm = \sqrt{ \dfrac{[1 - \sin(x)]^{2}}{1- \sin^{2} (x) } }](https://tex.z-dn.net/?f=%20%5Crm%20%3D%20%20%5Csqrt%7B%20%5Cdfrac%7B%5B1%20-%20%20%5Csin%28x%29%5D%5E%7B2%7D%7D%7B1-%20%20%20%5Csin%5E%7B2%7D%20%28x%29%20%7D%20%7D%20)
<u>We know that:</u>


Therefore, <u>the expression becomes:</u>
![\rm = \sqrt{ \dfrac{[1 - \sin(x)]^{2}}{\cos^{2} (x)}}](https://tex.z-dn.net/?f=%20%5Crm%20%3D%20%20%5Csqrt%7B%20%5Cdfrac%7B%5B1%20-%20%20%5Csin%28x%29%5D%5E%7B2%7D%7D%7B%5Ccos%5E%7B2%7D%20%28x%29%7D%7D%20)



The answer is <span>He subtracted 10 from the right side instead of adding 10 to the right side
Let's solve it:
</span><span>2x + y = 5
x − 2y = 10
________
Rearrange first equation to get y:
y = 5 - 2x
________
Substitute y into the second equation:
x - 2(5 - 2x) = 10
________
Multiply the terms:
x - 10 + 4x = 10
________
Combine the terms:
5x - 10 = 10
________
Add 10 on the both sides of the equation:
5x = 10 + 10
5x = 20
x = 4</span>
Answer:
cost is $4183.87
Step-by-step explanation:
given data
time t = 5 year
amount A = $1000
rate r = 6.25 % = 0.0625
to find out
how much it will cost
solution
we will apply here formula for present value of annuity that is express as
present value = amount ×
....................1
put here all these value we get cost we will pay
present value = amount ×
present value = 1000 ×
present value = 4183.869221
so cost is $4183.87
Answer:
10
100
1000
Step-by-step explanation:
I had a quiz on that the other day got 100%
Answer:
(x^4-8)^45 /180 +c
Step-by-step explanation:
If u=x^4-8, then du=(4x^3-0)dx or du=4x^3 dx by power and constant rule.
If du=4x^3 dx, then du/4=x^3 dx. I just divided both sides by 4.
Now we are ready to make substitutions into our integral.
Int(x^3 (x^4-8)^44 dx)
Int(((x^4-8)^44 x^3 dx)
Int(u^44 du/4)
1/4 Int(u^44 dul
1/4 × (u^45 / 45 )+c
Put back in terms of x:
1/4 × (x^4-8)^45/45 +c
We could multiply those fractions
(x^4-8)^45 /180 +c