Answer:
You take the repeating group of digits and divide it by the same number of digits but formed only by 9s.
Step-by-step explanation:
Let's say you have 0.111111111111...., your repeating pattern is 1, that consists of one digit (1). You take that digit and you divide it by 9:
1/9 is the fraction equivalent to 0.111111111111111...
Let's say you have 0.12121212121212...., the repeating pattern is 12, that consists of 2 digits (12). You take those 2 digits and divide them by 99:
12/99 is the fraction equivalent to 0.12121212121212...
which can be reduced to 4/33
If you have 0.363363363363..., your repeating pattern is 363, which is 3 digits, so you divide 363by 999:
363/999 is the fraction equivalent to 0.363363363363...
which can be simplified to 121/333
<h3><u>Answer:</u></h3>
<h3>
<u>Solution:</u></h3>
We are given that the arithmetic progression is defined by :
➝ 2n + 1
<em>Therefore, </em>
- <u>For </u><u>first </u><u>term</u>
➙ n = 1
➝ 2 × 1 + 1
➝ 2 + 1
➝ 3
- <u>For </u><u>second </u><u>term</u>
➙ n = 2
➝ 2 × 2 + 1
➝ 4 + 1
➝ 5
- <u>Common </u><u>difference</u>
➙ 2nd term - 1st term
➝ 5 - 3
➝ 2
<h3><u>More </u><u>information</u><u>:</u></h3>
- The difference between the successive term and the preceding term is the difference of an arithmetic progression. It is always same for the same arithmetic progression.