Step-by-step explanation:
Simple interest formula

Compound interest formula

a.

Simple interest is $125
b
. 
Compound interest is $125
c. the result for both a and b are the same
d.

the simple interest is $375
e
. ![A = 5000 (1 + \frac{0.025}{1})^{1*3}] \\A=5000(1.025)^3 \\A=5000(1.077)\\A= 5385](https://tex.z-dn.net/?f=A%20%3D%205000%20%281%20%2B%20%5Cfrac%7B0.025%7D%7B1%7D%29%5E%7B1%2A3%7D%5D%20%5C%5CA%3D5000%281.025%29%5E3%20%5C%5CA%3D5000%281.077%29%5C%5CA%3D%205385)
the compound interest is $385
f. the result compared, compound interest is $10 more than simple interest
g.

the simple interest is $600
h.
![A = 5000 (1 + \frac{0.02}{1})^{1*6}] \\A=5000(1.12)^6 \\A=5000(1.9738) \\A= 9869](https://tex.z-dn.net/?f=A%20%3D%205000%20%281%20%2B%20%5Cfrac%7B0.02%7D%7B1%7D%29%5E%7B1%2A6%7D%5D%20%5C%5CA%3D5000%281.12%29%5E6%20%5C%5CA%3D5000%281.9738%29%20%5C%5CA%3D%209869)
the compound interest is $4869
i. the result from g and h, h is over 8 times bigger than g.
j. interest compound annually is not the same as simple interest, only for the case of a and b seeing that it is for 1 year. but for 2years and above there is difference as seen in c to h
Answer:
6 and 3 over 4 is greater than -3 and 1 over 4
Step-by-step explanation:
one is negative the other is positive
Answer:
if you want a t*-value for a 90% confidence interval when you have 9 degrees of freedom, go to the bottom of the table, find the column for 90%, and intersect it with the row for df = 9. This gives you a t*–value of 1.833 (rounded).
Step-by-step explanation:
Hope this helps!
Answer:
you can simplify rations just like you simplify fractions. Whenever you are able to evenly divide both parts of the ratio with out changing the equation's answer, you are able to.
for example
if it were 3:6, you can simplify this by dividing these both by 3, leaving you with 1:2.