1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Soloha48 [4]
3 years ago
12

Find the slope of each line -2y = 2 - 2/5x

Mathematics
1 answer:
SVEN [57.7K]3 years ago
8 0
Divide both sides by -2, giving you y= -1+1/5x. The slope would be 1/5
You might be interested in
What is the relationship between the area of a triangle and the area of a rectangle?
solmaris [256]

let area of triangle be x

let area of rectangle be y

Then,

2x = y

7 0
3 years ago
Read 2 more answers
if I'm going to the lake that is 60 miles away and I'm driving 40 miles per hour how long would it take for me to get there
julsineya [31]
About 1.5 hours since you would do distance divided by the rate to get the time.
5 0
3 years ago
If the project is finished within 26 weeks of its start, the project manager will receive a bonus of $1,000; and if the project
denpristay [2]

Answer:

Probability of finishing within 26 weeks of start and earning $ 1000 bonus = 46%

Probability of finishing within 27 weeks of start and earning $ 500 bonus = 69.23%

Step-by-step explanation:

3 0
3 years ago
What type of transformation is shown?
Ilya [14]

I believe it is a reflection?  

6 0
3 years ago
Read 2 more answers
Simplify each rational expression to lowest terms, specifying the values of xx that must be excluded to avoid division
k0ka [10]

Answer:

(a) \frac{x^2-6x+5}{x^2-3x-10}=\frac{x-1}{x+2}. The domain of this function is all real numbers not equal to -2 or 5.

(b) \frac{x^3+3x^2+3x+1}{x^3+2x^2-x}=1+\frac{x^2+4x+1}{x^3+2x^2-x}. The domain of this function is all real numbers not equal to 0, -1+\sqrt{2} or -1+\sqrt{2}.

(c) \frac{x^2-16}{x^2+2x-8}=\frac{x-4}{x-2}.The domain of this function is all real numbers not equal to 2 or -4.

(d) \frac{x^2-3x-10}{x^3+6x^2+12x+8}=\frac{x-5}{\left(x+2\right)^2}. The domain of this function is all real numbers not equal to -2.

(e) \frac{x^3+1}{x^2+1}=x+\frac{-x+1}{x^2+1}. The domain of this function is all real numbers.

Step-by-step explanation:

To reduce each rational expression to lowest terms you must:

(a) For \frac{x^2-6x+5}{x^2-3x-10}

\mathrm{Factor}\:x^2-6x+5\\\\x^2-6x+5=\left(x^2-x\right)+\left(-5x+5\right)\\x^2-6x+5=x\left(x-1\right)-5\left(x-1\right)\\\\\mathrm{Factor\:out\:common\:term\:}x-1\\x^2-6x+5=\left(x-1\right)\left(x-5\right)

\mathrm{Factor}\:x^2-3x-10\\\\x^2-3x-10=\left(x^2+2x\right)+\left(-5x-10\right)\\x^2-3x-10=x\left(x+2\right)-5\left(x+2\right)\\\\\mathrm{Factor\:out\:common\:term\:}x+2\\x^2-3x-10=\left(x+2\right)\left(x-5\right)

\frac{x^2-6x+5}{x^2-3x-10}=\frac{\left(x-1\right)\left(x-5\right)}{\left(x+2\right)\left(x-5\right)}

\mathrm{Cancel\:the\:common\:factor:}\:x-5\\\\\frac{x^2-6x+5}{x^2-3x-10}=\frac{x-1}{x+2}

The denominator in a fraction cannot be zero because division by zero is undefined. So we need to figure out what values of the variable(s) in the expression would make the denominator equal zero.

To find any values for x that would make the denominator = 0 you need to set the denominator = 0 and solving the equation.

x^2-3x-10=\left(x+2\right)\left(x-5\right)=0

Using the Zero Factor Theorem: = 0 if and only if = 0 or = 0

x+2=0\\x=-2\\\\x-5=0\\x=5

The domain is the set of all possible inputs of a function which allow the function to work. Therefore the domain of this function is all real numbers not equal to -2 or 5.

(b) For \frac{x^3+3x^2+3x+1}{x^3+2x^2-x}

\mathrm{Divide\:the\:leading\:coefficients\:of\:the\:numerator\:}x^3+3x^2+3x+1\mathrm{\:and\:the\:divisor\:}x^3+2x^2-x\mathrm{\::\:}\frac{x^3}{x^3}=1

Quotient = 1

\mathrm{Multiply\:}x^3+2x^2-x\mathrm{\:by\:}1:\:x^3+2x^2-x

\mathrm{Subtract\:}x^3+2x^2-x\mathrm{\:from\:}x^3+3x^2+3x+1\mathrm{\:to\:get\:new\:remainder}

Remainder = x^2+4x+1}

\frac{x^3+3x^2+3x+1}{x^3+2x^2-x}=1+\frac{x^2+4x+1}{x^3+2x^2-x}

  • The domain of this function is all real numbers not equal to 0, -1+\sqrt{2} or -1+\sqrt{2}.

x^3+2x^2-x=0\\\\x^3+2x^2-x=x\left(x^2+2x-1\right)=0\\\\\mathrm{Solve\:}\:x^2+2x-1=0:\quad x=-1+\sqrt{2},\:x=-1-\sqrt{2}

(c) For \frac{x^2-16}{x^2+2x-8}

x^2-16=\left(x+4\right)\left(x-4\right)

x^2+2x-8= \left(x-2\right)\left(x+4\right)

\frac{x^2-16}{x^2+2x-8}=\frac{\left(x+4\right)\left(x-4\right)}{\left(x-2\right)\left(x+4\right)}\\\\\frac{x^2-16}{x^2+2x-8}=\frac{x-4}{x-2}

  • The domain of this function is all real numbers not equal to 2 or -4.

x^2+2x-8=0\\\\x^2+2x-8=\left(x-2\right)\left(x+4\right)=0

(d) For \frac{x^2-3x-10}{x^3+6x^2+12x+8}

\mathrm{Factor}\:x^2-3x-10\\\left(x^2+2x\right)+\left(-5x-10\right)\\x\left(x+2\right)-5\left(x+2\right)

\mathrm{Apply\:cube\:of\:sum\:rule:\:}a^3+3a^2b+3ab^2+b^3=\left(a+b\right)^3\\\\a=x,\:\:b=2\\\\x^3+6x^2+12x+8=\left(x+2\right)^3

\frac{x^2-3x-10}{x^3+6x^2+12x+8}=\frac{\left(x+2\right)\left(x-5\right)}{\left(x+2\right)^3}\\\\\frac{x^2-3x-10}{x^3+6x^2+12x+8}=\frac{x-5}{\left(x+2\right)^2}

  • The domain of this function is all real numbers not equal to -2

x^3+6x^2+12x+8=0\\\\x^3+6x^2+12x+8=\left(x+2\right)^3=0\\x=-2

(e) For \frac{x^3+1}{x^2+1}

\frac{x^3+1}{x^2+1}=x+\frac{-x+1}{x^2+1}

  • The domain of this function is all real numbers.

x^2+1=0\\x^2=-1\\\\\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\\\x=\sqrt{-1},\:x=-\sqrt{-1}

4 0
3 years ago
Other questions:
  • Translate 8 units to the right and 4 unit up (-8,4) (-4,2) (-3,-3)
    12·1 answer
  • Without graphing tell weather the lib containing ( 6,-3 ) and (0,-8 ) is horizontal vertical neither
    9·2 answers
  • What is 6b + 7b - 10
    14·2 answers
  • You have two pieces of string. One is 8 cm long. The other is 20 centimeters long. You want to cut each piece if string into sma
    11·1 answer
  • What is the value of 6n - 2 when n =3
    9·1 answer
  • Algebraic expression for 15x + 8
    8·1 answer
  • The ratio of boys to girls is 2 to 3. If there are 90 students in the band, how many of them are boys?
    5·1 answer
  • What is the slope and the y intercept for the graph y=7x-2
    15·1 answer
  • Which of the following is a true statement?
    12·1 answer
  • if train a and train b are 60 miles apart and train a leaves at 3:00 traveling 60mph and train b leaves at 4:00 traveling 80mph
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!