X2-64=0
x2=64
x=8 because when multiplied by itself, and plugged back in, it works
Answer: 2x and y= 4+
Step-by-step explanation:
x = 2 times 2 and so on....
y = 4 plus 4 plus 4 etc....
Answer:
Step-by-step explanation:
1) (xy+ 9y + 2) and (xy – 3)
Each term of second expression will be multiplied by first bracket.
xy(xy+9y+2) -3(xy+9y+2)
x²y²+9xy²+2xy-3xy-27y-6
x²y²+9xy²-xy-27y-6
2) (2xy + x + y) and (3xy2 – y)
3xy²(2xy+x+y) -y(2xy+x+y)
6x²y³+3x²y²+3xy³-2xy²-xy-y²
6x²y³ – 2xy² + 3x²y² – xy + 3xy³ – y²
3) (x – y) and (x + 3y)
x(x-y) +3y(x-y)
x²-xy+3xy-3y²
x²+2xy-3y²
4) (xy + 3x + 2) and (xy – 9)
xy(xy + 3x + 2) -9(xy + 3x + 2)
x²y²+3x²y+2xy-9xy-27x-18
x²y²+3x²y-7xy-27x-18
5) (x2 + 3xy – 2) and (xy + 3)
xy(x2 + 3xy – 2) +3(x2 + 3xy – 2)
x³y+3x²y²-2xy+3x²+9xy-6
x³y+3x²+3x²y²+7xy-6
6) (x + 3y) and (x – 3y)
x(x + 3y) -3y(x + 3y)
x²+3xy-3xy-9y²
x²-9y² ....
Hmm if I'm not mistaken, is just an "ordinary" annuity, thus
![\bf \qquad \qquad \textit{Future Value of an ordinary annuity} \\\\ A=pymnt\left[ \cfrac{\left( 1+\frac{r}{n} \right)^{nt}-1}{\frac{r}{n}} \right] \\\\\\](https://tex.z-dn.net/?f=%5Cbf%20%5Cqquad%20%5Cqquad%20%5Ctextit%7BFuture%20Value%20of%20an%20ordinary%20annuity%7D%0A%5C%5C%5C%5C%0AA%3Dpymnt%5Cleft%5B%20%5Ccfrac%7B%5Cleft%28%201%2B%5Cfrac%7Br%7D%7Bn%7D%20%5Cright%29%5E%7Bnt%7D-1%7D%7B%5Cfrac%7Br%7D%7Bn%7D%7D%20%5Cright%5D%0A%5C%5C%5C%5C%5C%5C)