1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
melamori03 [73]
3 years ago
8

What is a and b pls answer ASAP I need it !!! Plsss

Mathematics
1 answer:
nlexa [21]3 years ago
7 0

Answer:

The value of a = 5.

the value of b = 6.

Step-by-step explanation:

Given the points on the line

  • (6, 10)
  • (a, 8)
  • (4, b)
  • (2, 2)

Given that all of the points are on the same line and the line represents a linear function.

Thus, the slope between any two points must be the same.

First, determine the slope between (6, 10) and (2, 2)

(x₁, y₁) = (6, 10)

(x₂, y₂) = (2, 2)

Using the formula

Slope = m =  [y₂ - y₁] /  [x₂ - x₁]

               =  [2 - 10] / [2 - 6]

               = -8 / -4  

               = 2

Thus, the slope of the line = m = 2

Determine the value 'a'

(x₁, y₁) = (6, 10)

(x₂, y₂) = (a, 8)

Using the slope formula to determine the value of 'a'

Slope =  [y₂ - y₁] /  [x₂ - x₁]

As the slope between two points is 2.

now substitute slope = 2, (x₁, y₁) = (6, 10) and (x₂, y₂) = (a, 8) in the slope formula

Slope =  [y₂ - y₁] /  [x₂ - x₁]

2 = [8 - 10] / [a - 6]

2(a - 6) = 8 - 10

2a - 12 = -2

2a = -2 + 12

2a = 10

divide both sides by 2

a = 5

Therefore, the value of a = 5.

Determine the value 'b'

(x₁, y₁) = (2, 2)

(x₂, y₂) = (4, b)

Using the slope formula to determine the value of 'b'

Slope =  [y₂ - y₁] /  [x₂ - x₁]

As the slope between two points is 2.

now substitute slope = 2, (x₁, y₁) = (2, 2) and (x₂, y₂) = (4, b) in the slope formula

Slope =  [y₂ - y₁] /  [x₂ - x₁]

2 = [b - 2] / [4 - 2]

2(4 - 2) = b - 2

8 - 4 =b - 2

4 = b - 2

b = 6

Therefore, the value of b = 6

You might be interested in
(64-8)÷4 answer ASAP please​
Ann [662]

Answer:

14

Step-by-step explanation:

64-8=56

56/4=14

4 0
3 years ago
Which of the following angle relationships in △ABC are correct? Select all that apply. There is a triangle ABC in which the leng
Monica [59]

9514 1404 393

Answer:

  A, B, D

Step-by-step explanation:

The sides in order from smallest to largest are ...

  AC, BC, AB

Then the opposite angles in order from smallest to largest are ...

  B, A, C

Let's consider the choices:

A. m∠A < m∠C --- true

B. m∠B = m∠C --- true

C. m∠A < m∠B --- false

D. m∠B < m∠A < m∠C --- true

7 0
2 years ago
The curve
kherson [118]

Answer:

Point N(4, 1)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = \sqrt{x - 3}<u />

<u />\displaystyle y' = \frac{1}{2}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                                   \displaystyle y = (x - 3)^{\frac{1}{2}}
  2. Chain Rule:                                                                                                        \displaystyle y' = \frac{d}{dx}[(x - 3)^{\frac{1}{2}}] \cdot \frac{d}{dx}[x - 3]
  3. Basic Power Rule:                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{\frac{1}{2} - 1} \cdot (1 \cdot x^{1 - 1} - 0)
  4. Simplify:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}} \cdot 1
  5. Multiply:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}}
  6. [Derivative] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle y' = \frac{1}{2(x - 3)^{\frac{1}{2}}}
  7. [Derivative] Rewrite [Exponential Rule - Root Rewrite]:                                 \displaystyle y' = \frac{1}{2\sqrt{x - 3}}

<u>Step 3: Solve</u>

<em>Find coordinates</em>

<em />

<em>x-coordinate</em>

  1. Substitute in <em>y'</em> [Derivative]:                                                                             \displaystyle \frac{1}{2} = \frac{1}{2\sqrt{x - 3}}
  2. [Multiplication Property of Equality] Multiply 2 on both sides:                      \displaystyle 1 = \frac{1}{\sqrt{x - 3}}
  3. [Multiplication Property of Equality] Multiply √(x - 3) on both sides:            \displaystyle \sqrt{x - 3} = 1
  4. [Equality Property] Square both sides:                                                           \displaystyle x - 3 = 1
  5. [Addition Property of Equality] Add 3 on both sides:                                    \displaystyle x = 4

<em>y-coordinate</em>

  1. Substitute in <em>x</em> [Function]:                                                                                \displaystyle y = \sqrt{4 - 3}
  2. [√Radical] Subtract:                                                                                          \displaystyle y = \sqrt{1}
  3. [√Radical] Evaluate:                                                                                         \displaystyle y = 1

∴ Coordinates of Point N is (4, 1).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

4 0
2 years ago
What is the answer for (2b + 8)5 ?
Brut [27]

Answer:

Expanded, the answer would be 10b + 40

Step-by-step explanation:

Just multiply 8 to 2b and 8

6 0
2 years ago
Find the Highest Common Factor (HCF) of 196 and 12
Norma-Jean [14]

Answer:

The greatest common factor is 4

Step-by-step explanation:

1.Find the prime factorization of 12

         a) 12 = <u>2</u> × <u>2</u> × 3

2.Find the prime factorization of 196

         a) 196 =<em> </em><u>2</u> ×<u> 2</u> × 7 × 7

To find the GCF, multiply all the prime factors common to both numbers:

          a)GCF=2x2

Therefore, GCF = 2 × 2

GCF = 4

7 0
3 years ago
Read 2 more answers
Other questions:
  • What is the area of rectangle PQRS?
    14·2 answers
  • A golden rectangle is 6.1 inches, what is the other measurement?
    8·1 answer
  • A plane flies 1640 miles in 4 hours. what is the average speed of the plane?
    8·2 answers
  • HELPPPPPPPPP MEEEEEEEE PLEASEEEEEE
    8·2 answers
  • 19 ft 17ft 19 ft Volume =​
    5·2 answers
  • PLEASE HELPPP!!
    12·1 answer
  • CAN SOMEONE PLEASE WRITE AN EQUATION FOR THIS IF YOU KNOW HOW! I GIVE BRAINLIST!
    11·2 answers
  • Bailey wants to find 0.4 × 0.9. Part A Which of the following grids models the problem? A. Hundred grid. Four grid blocks shaded
    11·1 answer
  • Lesson 10.2 area of composite figures worksheet assigment
    7·1 answer
  • To estimate the percentage of a state's voters who support the current
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!