For a smoothing constant of 0.2
Time period – 1 2 3 4 5 6 7 8 9 10
Actual value – 46 55 39 42 63 54 55 61 52
Forecast – 58 55.6 55.48 52.18 50.15 52.72 52.97 53.38 54.90
Forecast error - -12 -.6 -16.48 – 10.12 12.85 1.28 2.03 7.62 -2.9
The mean square error is 84.12
The mean forecast for period 11 is 54.38
For a smoothing constant of 0.8
Time period – 1 2 3 4 5 6 7 8 9 10
Actual value – 46 55 39 42 63 54 55 61 52
Forecast – 58 48.40 53.68 41.94 41.99 58.80 54.96 54.99 59.80
Forecast error - -12 6.60 -14.68 0.06 21.01 -4.80 0.04 6.01 -7.80The mean square error is 107.17
The mean forecast for period 11 is 53.56
Based on the MSE, smoothing constant of .2 offers a better model since the mean forecast is much better compared to the 53.56 of the smoothing constant of 0.8.
*your
If the ratio is 5:3, then you divide 275 by 5, and then multiply it by 3. If you test the result, you'll find that the ratio fits.
Answer:
See explanation
Step-by-step explanation:
In ΔABC, m∠B = m∠C.
BH is angle B bisector, then by definition of angle bisector
∠CBH ≅ ∠HBK
m∠CBH = m∠HBK = 1/2m∠B
CK is angle C bisector, then by definition of angle bisector
∠BCK ≅ ∠KCH
m∠BCK = m∠KCH = 1/2m∠C
Since m∠B = m∠C, then
m∠CBH = m∠HBK = 1/2m∠B = 1/2m∠C = m∠BCK = m∠KCH (*)
Consider triangles CBH and BCK. In these triangles,
- ∠CBH ≅ ∠BCK (from equality (*));
- ∠HCB ≅ ∠KBC, because m∠B = m∠C;
- BC ≅CB by reflexive property.
So, triangles CBH and BCK are congruent by ASA postulate.
Congruent triangles have congruent corresponding sides, hence
BH ≅ CK.
Answer:
x =69 y= 420
Step-by-step explanation:
69⁹99999999999999999999999999999999999