Well, let's see. The problem gave you an ordered pair. In other words, you have an 'x' and a 'y' coordinate. All you need to do is put them into the equation.
Step-by-step explanation:
This means that instead of --
-3x - 3y = 125 + 5y = -20
We would have:
-3(-5)-3(-5) = 125(-5) + 5(-5) = -20
From here, you just simplify it into:
30 = -650 = -20
Since the values are not the same, the ANSWER is NO. The ordered pair does not satisfy the following system of equations.
Answer:
0.4
Step-by-step explanation:
2/5 = 4/10
Answer:
Point (1,8)
Step-by-step explanation:
We will use segment formula to find the coordinates of point that will partition our line segment PQ in a ratio 3:1.
When a point divides any segment internally in the ratio m:n, the formula is:
![[x=\frac{mx_2+nx_1}{m+n},y= \frac{my_2+ny_1}{m+n}]](https://tex.z-dn.net/?f=%5Bx%3D%5Cfrac%7Bmx_2%2Bnx_1%7D%7Bm%2Bn%7D%2Cy%3D%20%5Cfrac%7Bmy_2%2Bny_1%7D%7Bm%2Bn%7D%5D)
Let us substitute coordinates of point P and Q as:
,




![[x=\frac{4}{4},y=\frac{32}{4}]](https://tex.z-dn.net/?f=%5Bx%3D%5Cfrac%7B4%7D%7B4%7D%2Cy%3D%5Cfrac%7B32%7D%7B4%7D%5D)
Therefore, point (1,8) will partition the directed line segment PQ in a ratio 3:1.
Let one odd integer = x
other odd integer = x +2
Sum = x + x+2 = -44
=> 2x + 2 = -44
=> 2x = -44 -2 = -46
=> x = -46/2 = -23
x+2 = -23 + 2 = -21
Integers are -23 and -21
Sir your probably gunna report this but i have no equation if you could kindly provide the information I requested i would be happy to answer you question