Answer:
Check the explanation
Explanation:
#include <iostream>
using namespace std;
void hex2dec(string hex_num){
int n = 0;
//Loop through all characters in string
for(int i=0;i<hex_num.size();i++){
//take ith character
char c = hex_num[i];
//Check if c is digit
if(c>='0' && c<='9'){
n = 16*n + (c-48);
}
//Convert c to decimal
else{
n = 16*n + (c-55);
}
}
cout<<hex_num<<" : "<<n<<endl;
}
int main()
{
hex2dec("EF10");
hex2dec("AA");
return 0;
}
The Output can be seen below :
Answer:
def leap_year(y):
if y % 4 == 0:
return 1
else:
return 0
def number_of_days(m,y):
if m == 2:
return 28 + leap_year(y)
elif m == 1 or m == 3 or m == 5 or m == 7 or m == 8 or m ==10 or m == 12:
return 31
elif m == 4 or m == 6 or m == 9 or m == 11:
return 30
def days(m,d):
if m == 1:
return 0 + d
if m == 2:
return 31 + d
if m == 3:
return 59 + d
if m == 4:
return 90 + d
if m == 5:
return 120 + d
if m == 6:
return 151 + d
if m == 7:
return 181 + d
if m == 8:
return 212 + d
if m == 9:
return 243 + d
if m == 10:
return 273 + d
if m == 11:
return 304 + d
if m == 12:
return 334 + d
def days_left(d,m,y):
if days(m,d) <= 60:
return 365 - days(m,d) + leap_year(y)
else:
return 365 - days(m,d)
print("Please enter a date")
day=int(input("Day: "))
month=int(input("Month: "))
year=int(input("Year: "))
choice=int(input("Menu:\n1) Calculate the number of days in the given month.\n2) Calculate the number of days left in the given year.\n"))
if choice == 1:
print(number_of_days(month, year))
if choice == 2:
print(days_left(day,month,year))
Explanation:
Hoped this helped
Answer:
O(n) which is a linear space complexity
Explanation:
Space complexity is the amount of memory space needed for a program code to be executed and return results. Space complexity depends on the input space and the auxiliary space used by the algorithm.
The list or array is an integer array of 'n' items, with the memory size 4*n, which is the memory size of an integer multiplied by the number of items in the list. The listSize, i, and arithmeticSum are all integers, the memory space is 4(3) = 12. The return statement passes the content of the arithmetic variable to another variable of space 4.
The total space complexity of the algorithm is "4n + 16" which is a linear space complexity.