Answer:
if its suplementary its 70
Step-by-step explanation:
Given:
Uniform distribution of length of classes between 45.0 to 55.0 minutes.
To determine the probability of selecting a class that runs between 51.5 to 51.75 minutes, find the median of the given upper and lower limit first:
45+55/2 = 50
So the highest number of instances is 50-minute class. If the probability of 50 is 0.5, then the probability of length of class between 51.5 to 51.75 minutes is near 0.5, approximately 0.45. <span />
Three times the variable m minus four is equal to fourteen.
Another way could be:
Four less than three multiplied by m is equivalent to fourteen.
The first way I put it is simpler but if you really want to impress your teacher then I suggest going with the second way.
Also if you are looking to solve the equation then it would be:
3m - 4 = 14
+4 +4
------------
3m = 18
----- -----
3 3
m = 5
Hope that helped :-)
If <em>x</em> = -1, you have
2(-1) + 3 cos(-1) + <em>e</em> ⁻¹ ≈ -0.0112136 < 0
and if <em>x</em> = 0, you have
2(0) + 3 cos(0) + <em>e</em> ⁰ = 4 > 0
The function <em>f(x)</em> = 2<em>x</em> + 3 cos(<em>x</em>) + <em>eˣ</em> is continuous over the real numbers, so the intermediate value theorem applies, and it says that there is some -1 < <em>c</em> < 0 such that <em>f(c)</em> = 0.