Let 'w' represent the width of the parking lot, then 'w+6' represents its length
area = width * length
160 = w * (w+6)
solving for 'w' we have a positive value of w=10
10+6=16
the width of the parking lot is 10 yards, the length of the parking lot is 16 yards
Answer:
slope is 3
Step-by-step explanation:
Mark brainliest plz
Its correct
Answer:
See answer below
Step-by-step explanation:
The statement ‘x is an element of Y \X’ means, by definition of set difference, that "x is and element of Y and x is not an element of X", WIth the propositions given, we can rewrite this as "p∧¬q". Let us prove the identities given using the definitions of intersection, union, difference and complement. We will prove them by showing that the sets in both sides of the equation have the same elements.
i) x∈AnB if and only (if and only if means that both implications hold) x∈A and x∈B if and only if x∈A and x∉B^c (because B^c is the set of all elements that do not belong to X) if and only if x∈A\B^c. Then, if x∈AnB then x∈A\B^c, and if x∈A\B^c then x∈AnB. Thus both sets are equal.
ii) (I will abbreviate "if and only if" as "iff")
x∈A∪(B\A) iff x∈A or x∈B\A iff x∈A or x∈B and x∉A iff x∈A or x∈B (this is because if x∈B and x∈A then x∈A, so no elements are lost when we forget about the condition x∉A) iff x∈A∪B.
iii) x∈A\(B U C) iff x∈A and x∉B∪C iff x∈A and x∉B and x∉C (if x∈B or x∈C then x∈B∪C thus we cannot have any of those two options). iff x∈A and x∉B and x∈A and x∉C iff x∈(A\B) and x∈(A\B) iff x∈ (A\B) n (A\C).
iv) x∈A\(B ∩ C) iff x∈A and x∉B∩C iff x∈A and x∉B or x∉C (if x∈B and x∈C then x∈B∩C thus one of these two must be false) iff x∈A and x∉B or x∈A and x∉C iff x∈(A\B) or x∈(A\B) iff x∈ (A\B) ∪ (A\C).
Answer:
x=-4 x=2
Step-by-step explanation:
y = x^2 + 2x - 8
Set equal to zero
0 = x^2 + 2x - 8
Factor
What two numbers multiply to -8 and add to 2
4 * -2 = -8
4+-2 = 2
0=(x+4) ( x-2)
Using the zero product property
x+4 =0 x-2 =0
x=-4 x=2