Quadratic f(x) = (x -h)² +k has vertex (h, k) and axis of symmetry x=h. When k is negative, the number of real solutions is 2, because both branches of the function cross the x-axis.
In your equation, h = -3 and k = -8.
Axis of symmetry: x = -3
Vertex: (-3, -8)
Number of real solutions: 2
0.20 would be the answer.
The number places on a number go as follows starting at 0. and going to the right
ones, tenths, hundredth
This means that 0.00 is the hundredth place (the bolded 0). Since you round a 9 up one, this makes the 1 in the tenths place go to a 2 and the hundredth go to a 0
3.50m+75 for the 30 miles, he is being paid 105 plus the daily amount of 75 which equals to 180$.
D: (-infinity, 0) U (0, infinity) because you cant have a zero in the bottom of the fraction
i. 171
ii. 162
iii. 297
Solution,
n(U)= 630
n(I)= 333
n(T)= 168
i. Let n(I intersection T ) be X
![333 - x + x + 468 - x = 630 \\ or \: 333 + 468 - x = 630 \\ or \: 801 - x = 630 \\ or \: - x = 630 - 801 \\ or \: - x = - 171 \\ x = 171](https://tex.z-dn.net/?f=333%20-%20x%20%2B%20x%20%2B%20468%20-%20x%20%3D%20630%20%5C%5C%20or%20%5C%3A%20333%20%2B%20468%20-%20x%20%3D%20630%20%5C%5C%20or%20%5C%3A%20801%20-%20x%20%3D%20630%20%5C%5C%20or%20%5C%3A%20%20-%20x%20%3D%20630%20-%20801%20%5C%5C%20or%20%5C%3A%20%20-%20x%20%3D%20%20-%20171%20%5C%5C%20x%20%3D%20171)
<h3>ii.
n(only I)= n(I) - n(I intersection T)</h3><h3>
= 333 - 171</h3><h3>
= 162</h3>
<h3>
iii. n ( only T)= n( T) - n( I intersection T)</h3><h3>
= 468 - 171</h3><h3>
= 297</h3>
<h3>
Venn- diagram is shown in the attached picture.</h3>
Hope this helps...
Good luck on your assignment...