Answer:
position: (-6, -4)
range: 6
Step-by-step explanation:
The equation is that of a circle centered at (-6, -4) with a radius of √36 = 6. We presume that the "position" is that of the circle's center, and the "range" is the radius of the circle.
___
The standard form equation of a circle with center (h, k) and radius r is ...
(x -h)^2 +(y -k)^2 = r^2
Matching parts of the equation, we find ...
h = -6, k = -4, r = √36 = 6.
Answer:
Use the distance formula to determine the distance between the two points.
Distance
=
√(x2−x1)^2 + (y2−y1)^2
Substitute the actual values of the points into the distance formula.
√ ( (−6) − 0)^2 +( (−3) − 4)^2
Subtract 0 from −6
√(−6)^2 + ( ( −3 ) −4 )^2
Raise −6 to the power of 2
√36 + ( ( −3 ) −4 )^2
Subtract 4 from −3
√36 + ( −7 )^2
Raise −7 to the power of 2
√ 36 + 49
Add 36 and 49
√85
Answer:
Below.
Step-by-step explanation:
Area = 5(x + 3)
= 5x + 15
Perimeter = 2(x + 3) + 2(5)
= 2x + 6 + 10
= 2x + 16.