<h3><u>Question</u><u>:</u></h3>
<u>The difference between a 2-digit number and the number formed by reversing its digits is 45. If the sum of the digits of the original number is 13, then find the number. </u>
<h3><u>Statement</u><u>:</u></h3>
<u>The difference between a 2-digit number and the number formed by reversing its digits is 45. </u><u>T</u><u>he sum of the digits of the original number is 13</u><u>.</u>
<h3><u>Solution:</u></h3>
- Let one of the digit of the original number be x.
- So, the other digit = (13-x)
- Therefore, the two digit number = 10(13-x) + x = 130-10x+x = 130-9x
- The number obtained after interchanging the digits is 10x+(13-x) =9x+13
- Therefore, by the problem
130-9x-(9x+13) = 45
or, 130-9x- 9x-13 = 45
or, -18x = 45-130+13
or, -18x= -72
or, x = 72/18 = 4
or, x = 4
- So, the original number = 130-9x = 130 -9(4) = 130 - 36 = 94
<h3>Answer:</h3>
The number is 94.
I think the answer you have given isn't right. The answer should be 94.
Answer:
What do you like to be?
Step-by-step explanation:
A. 6 pounds of apples for $9
9/6=1.5=$1.50 per pound
ANSWER

EXPLANATION
We use the sine rule for solving triangles.
This is given by the formula,

From the triangle,

We multiply both sides of the equation by 60 to get,


We solve for x to obtain,


To the nearest tenth, we round to one decimal place to get,