Answer:
y = - 8x² + 6
Step-by-step explanation:
The equation of a parabola in vertex form is
y = a(x - h)² + k
where (h, k) are the coordinates of the vertex and a is a multiplier
Here (h, k) = (0, 6), thus
y = a(x - 0)² + 6, that is
y = ax² + 6
To find a substitute (- 1, - 2) into the equation
- 2 = a(- 1)² + 6, that is
- 2 = a + 6 ( subtract 6 from both sides )
- 8 = a
y = - 8x² + 6
What are you looking for?
Answer:
A. 1%
B. 80%
C. 0.8, 8/10
Step-by-step explanation:
A. There are 100 blocks so each block is 1/100 which is 1%
B. As you can see, there are 80 blocks shaded so that would be 80/100 which is 80%
C. You can represent a percent as a decimal or a fraction
Hope this helped!
Answer:
The answer is 5/6, or .833, 3 repeated.
Step-by-step explanation:
The 4 is only one side of the die, or 1/6 if the surface of the die. So the other part that is left is the other 5/6 of the surface.
Answer:
No
Step-by-step explanation:
A rational number is a number that can be expressed as a fraction p/q where p and q are integers and q!=0. A rational number p/q is said to have numerator p and denominator q. Numbers that are not rational are called irrational numbers. The real line consists of the union of the rational and irrational numbers. The set of rational numbers is of measure zero on the real line, so it is "small" compared to the irrationals and the continuum.
The set of all rational numbers is referred to as the "rationals," and forms a field that is denoted Q. Here, the symbol Q derives from the German word Quotient, which can be translated as "ratio," and first appeared in Bourbaki's Algèbre (reprinted as Bourbaki 1998, p. 671).
Any rational number is trivially also an algebraic number.
Examples of rational numbers include -7, 0, 1, 1/2, 22/7, 12345/67, and so on. Farey sequences provide a way of systematically enumerating all rational numbers.
The set of rational numbers is denoted Rationals in the Wolfram Language, and a number x can be tested to see if it is rational using the command Element[x, Rationals].
The elementary algebraic operations for combining rational numbers are exactly the same as for combining fractions.
It is always possible to find another rational number between any two members of the set of rationals. Therefore, rather counterintuitively, the rational numbers are a continuous set, but at the same time countable.