Humans are called heterotrophs
Answer:
a.Many mitochondrial genes resemble proteobacteria genes, while the genes in the chloroplast resemble genes found in some photosynthetic bacteria.
c.Mitochondria and chloroplasts both have their own circular DNA and 70S ribosomes that are similar to those found in bacteria.
d.Mitochondria and chloroplasts replicate by a process similar to mitosis.
Explanation:
Endosymbiotic theory states that mitochondria and chloroplast which are organelles of eukaryotic cells were once independently living micro-organisms but with due course of time eukaryotic cells engulfed them and they become an integral part of these eukaryotic cells.
The resemblance between mitochondrial genes with those of proteobacteria and chloroplast genes with photosynthetic bacteria strongly support endosymbiotic theory. Apart from this, the presence of their own DNA that too circular just like prokaryotic microbes and 70 S ribosomes also support this theory. Also just like prokaryotic cells, before cell division mitochondria and chloroplasts undergo replication by means of a process known as binary fission.
<u>Stem cell </u>research has the potential to significantly impact the development of disease-modifying treatments for Parkinson’s disease with considerable progress made in creating dopamine-progressing cells.
Explanation:
Parkinson’s disease, a neurodegenerative disease, leads to reduction of dopamine (a neurochemical messenger which carries messages involving thinking and body movements to brain) in the body because the disease will target and kill dopamine-producing nerve cells (neurons). This leads to loss of movement and thinking abilities which are activated by dopamine.
Stem cells research is done to study about the prospects of stem cells in stem cell therapy for Parkinson’s patients as a viable source of new dopamine nerve cells. Research has been involved in growing stem cells to replace or regenerate dopamine-producing nerve cells by using embryonic stem cells or induced pluripotent stem cells as a treatment modality in Parkinson’s disease.