1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iragen [17]
3 years ago
13

I WILL GIVE YOU BRAINLY PLSS

Mathematics
1 answer:
GrogVix [38]3 years ago
6 0

Answer: D

Step-by-step explanation:

(-3)-(1)=-4

-4>-19

(-4)+(6)=2

2>-16

You might be interested in
What is y=2x+3 on a graph??
Anettt [7]

Answer:

points on the line: (0,3) (1,4) (-4,-5)

Step-by-step explanation:

put those points on the graph and just draw a line that connect to all of them

3 0
3 years ago
Law of Sines or Law of Cosines....Help!!
iren2701 [21]

Answer:

Law of cosines to find missing measures

c^2= a^2+ b^2 - 2ab*cos(C)

Used because it is a SAS triangle

Step-by-step explanation:

This is known as a side, angle, side, or SAS triangle. We can find the missing measures by using the Law of cosines

c^2= a^2+b^2-2ab*cos(C)

7 0
3 years ago
Correct answer's only (Highlighted due to glitch) <br> But please help.
andrew-mc [135]
The easiest way is to plug x=-4, y=-1 in the equation to see which one works.
8(-4)-9(-1)=-23
B is correct.
3 0
3 years ago
Hi, how do we do this question?​
Nutka1998 [239]

Answer:

\displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

General Formulas and Concepts:

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring

<u>Algebra II</u>

  • Polynomial Long Division

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Integration Constant C
  • Indefinite Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Logarithmic Integration

U-Substitution

Step-by-step explanation:

*Note:

You could use u-solve instead of rewriting the integrand to integrate this integral.

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int {\frac{2x}{3x + 1}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integrand] Rewrite [Polynomial Long Division (See Attachment)]:           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\bigg( \frac{2}{3} - \frac{2}{3(3x + 1)} \bigg)} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\frac{2}{3}} \, dx - \int {\frac{2}{3(3x + 1)}} \, dx
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}\int {} \, dx - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx
  4. [1st Integral] Reverse Power Rule:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 3x + 1
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = 3 \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{3}{3x + 1}} \, dx
  2. [Integral] U-Substitution:                                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{1}{u}} \, du
  3. [Integral] Logarithmic Integration:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|u| + C
  4. Back-Substitute:                                                                                            \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|3x + 1| + C
  5. Factor:                                                                                                           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = -2 \bigg( \frac{1}{9}ln|3x + 1| - \frac{x}{3}  \bigg) + C
  6. Rewrite:                                                                                                         \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
Each data point represents a single white dwarf supernova that has been observed. the data points that appear farthest to the le
MakcuM [25]
A type Ia supernova is a type of supernova that occurs in binary systems (two stars orbiting one another) in which one of the stars is a white dwarf. The other star can be anything from a giant star to an even smaller white dwarf<span>.

I hope my answer has come to your help. God bless and have a nice day ahead!
</span>
6 0
3 years ago
Other questions:
  • What is the simplified expression for -3(2x-7)+2y+ 2(x+y)?
    8·1 answer
  • The sum of w and 253
    12·1 answer
  • Which equations are equivalent to the expression below ? Check all that apply
    7·1 answer
  • What is 0.000618 closest approximation.
    5·1 answer
  • How do I solve this? Helppp​
    5·1 answer
  • Write an algebraic expression for 1 more than the quotient of n and 2
    15·1 answer
  • When translating the point (3,5) 5 units up and 3 units to the left, we should get:
    5·1 answer
  • Explain how to do this for 20 points answer must be right and explain how you did it.
    12·2 answers
  • Can you help me please ​
    5·1 answer
  • In the year 2007, a person bought a new car for $14000. For each consecutive year after that, the value of the car depreciated b
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!