Answer:
2.2 × 10³ mm³
Step-by-step explanation:
We have a triangular prism with the following dimensions:
Altitude: 20.5 millimeters
Base: 16 millimeters
Height: 13.3 millimeters
We can calculate the volume of a triangular prism using the following expression.
V = (1/2 × Altitude × Base) × Height
where,
(1/2 × Altitude × Base) is the area of the base
V = (1/2 × Altitude × Base) × Height
V = (1/2 × 20.5 mm × 16 mm) × 13.3 mm = 2.2 × 10³ mm³
![\left[\begin{array}{ccc}22&18\end{array}\right]\times\left[\begin{array}{cccc}5&18&32&40\\25&40&38&12\end{array}\right]\\\\=\left[\begin{array}{cccc}22\cdot5+18\cdot25&22\cdot18+18\cdot40&22\cdot32+18\cdot38&22\cdot40+18\cdot12\end{array}\right]\\\\=\left[\begin{array}{cccc}560&1116&1388&1096\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D22%2618%5Cend%7Barray%7D%5Cright%5D%5Ctimes%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D5%2618%2632%2640%5C%5C25%2640%2638%2612%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D22%5Ccdot5%2B18%5Ccdot25%2622%5Ccdot18%2B18%5Ccdot40%2622%5Ccdot32%2B18%5Ccdot38%2622%5Ccdot40%2B18%5Ccdot12%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D560%261116%261388%261096%5Cend%7Barray%7D%5Cright%5D)
second question:
January: 32 · 22 + 38 · 18 = 704 + 684 = 1388
December: 18 · 22 + 40 · 18 = 396 + 720 = 1116
1388 - 1116 = 272
Answer: $272.
Simple,
so you have...
-5m=-35
You are trying to find m, so, to
isolate the variable divide both sides by -5:

m=7
Now, to check your work, plug in m.
-5(7)=-35
-35=-35
Thus, you know your answer is correct.
The two fractions that added together give you a sum of -7/24 are 1/24+-8/24= -7/24