The answer is b 144 i think
first off, is noteworthy that's the graph of an exponential function, thus the function will be along the lines of g(x) = abˣ , now, what's "a" and "b" values?
well, let's take a peek when x = 0 and x = 1.
![\bf g(x) = ab^x \\\\[-0.35em] ~\dotfill\\\\ \begin{cases} x = 0\\ y = 1 \end{cases}\implies 1=ab^0\implies 1=a(1)\implies \boxed{1=a} \\\\[-0.35em] ~\dotfill\\\\ \begin{cases} x = 1\\ y = 4 \end{cases}\implies 4 = ab^1\implies 4=1b^1\implies \boxed{4=b} \\\\[-0.35em] ~\dotfill\\\\ ~\hfill g(x) = 4^x\qquad \qquad \qquad \begin{array}{|c|c|ll} \cline{1-2} x&y\\ \cline{1-2} -2&\frac{1}{4^2}\to \frac{1}{16}\\ -1&\frac{1}{4}\\ 0&1\\ 1&4\\ 2&16\\ \cline{1-2} \end{array}~\hfill](https://tex.z-dn.net/?f=%5Cbf%20g%28x%29%20%3D%20ab%5Ex%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cbegin%7Bcases%7D%20x%20%3D%200%5C%5C%20y%20%3D%201%20%5Cend%7Bcases%7D%5Cimplies%201%3Dab%5E0%5Cimplies%201%3Da%281%29%5Cimplies%20%5Cboxed%7B1%3Da%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cbegin%7Bcases%7D%20x%20%3D%201%5C%5C%20y%20%3D%204%20%5Cend%7Bcases%7D%5Cimplies%204%20%3D%20ab%5E1%5Cimplies%204%3D1b%5E1%5Cimplies%20%5Cboxed%7B4%3Db%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20~%5Chfill%20g%28x%29%20%3D%204%5Ex%5Cqquad%20%5Cqquad%20%5Cqquad%20%5Cbegin%7Barray%7D%7B%7Cc%7Cc%7Cll%7D%20%5Ccline%7B1-2%7D%20x%26y%5C%5C%20%5Ccline%7B1-2%7D%20-2%26%5Cfrac%7B1%7D%7B4%5E2%7D%5Cto%20%5Cfrac%7B1%7D%7B16%7D%5C%5C%20-1%26%5Cfrac%7B1%7D%7B4%7D%5C%5C%200%261%5C%5C%201%264%5C%5C%202%2616%5C%5C%20%5Ccline%7B1-2%7D%20%5Cend%7Barray%7D~%5Chfill)
Answer:
7 minutes
Step-by-step explanation:
average time = 6 minutes per mile
sum = average * count = 6 minutes / mile * 4 miles = 24 minutes
first + last mile = 5 + 5 = 10 minutes
first + second + third + last mile = sum = 24 minutes
second + third = sum - first - last = 24 - 5 - 5 = 24 - 10 = 14 minutes
average of 2 miles in the middle = sum / count = 14 minutes / 2 = 7 minutes
So let's leave the 112 aside for now. The question then becomes how to write the decimal 0.001 as a fraction. The key is to remember that
0.x corresponds to "tenths" so x/10
0.0x corresponds to "hundredths" --> x/100
0.00x corresponds to "thousandths" --> x/1000
The number 0.001 is just 1 thousandth, or 1/1000
Now back to 112.001. You can write it as
112/1 + 1/1000 =
(112,000+1)/1000 =
112,001/1000 (the fraction you were looking for)
Let me know if you have questions
The answer is A, you just have to plug it into the equation, but you missed up one the equation it's suppose to be P=10500(1.01)^x. To a power and multiplying are very different things