Answer:
√(137)
Step-by-step explanation:
First, you will need to find the other side length.....then you can use the Pythagorean Theorem to find the diagonal:
L x W = 44
4 x W = 44
W =11
Now the Pythag, Theorem:
diagonal^2 = 4^2 + 11^2
d^2 = 16+121
d^2 = 137
d = √(137)
Since we're doing compound interest for four years it will be simpler than daily.
In case you didn't know the formula, here it is: A = P (1 +r/n)^(nt)
now lets substitute.
A = 500 (1 + 0.03)^4
A = 500 (1.03)^4
A = 500 (1.12550881)
A = 562.754405
Since that decimal is too big for cash, let's round it. Notice that the number after 5 is lower than 5. Thus the first two numbers stay the same and the final answer will be..
A = 562.75
Hope this helps :3
The correct answer is: [D]: "17" .
______________________________________________________
The radius is: " 17" .
______________________________________________________
Note:
______________________________________________________
The formula/equation for the graph of a circle is:
______________________________________________________
(x − h)² +<span> </span> (y − k)² = r² ;
in which:
" (h, k) " ; are the coordinate of the point of the center of the circle;
"r" is the length of the "radius" ; for which we want to determine;
_______________________________________________________
We are given the following equation of the graph of a particular circle:
_______________________________________________________
→ (x − 4)² + (y + 12)² = 17² ;
which is in the correct form:
→ " (x − h)² + (y − k)² = r² " ;
in which: " h = 4 " ;
" k = -12" ;
"r = 17 " ; which is the "radius" ; which is our answer.
→ { Note that: "k = NEGATIVE 12" } ;
→ Since the equation <u>for this particular circle</u> contains the expression: _________________________________________________________
→ "...(y + k)² ..." ;
[as opposed to the standard form: "...(y − k)² ..." ] ;
_________________________________________________________
→ And since the coordinates of the center of a circle are represented by:
" (h, k) " ;
→ which are: " (4, -12) " ; (<u>for this particular circle</u>) ;
_________________________________________________________
→ And since: " k = -12 " ; (<u>for this particular circle</u>) ;
_________________________________________________________
then:
" [y − k ] ² = [ y − (k) ] ² = " [ y − (-12) ] ² " ;
= " ( y + 12)² " ;
{NOTE: Since: "subtracting a negative" is the same as "adding a positive" ;
→ So; " [ y − (-12 ] " = " [ y + (⁺ 12) ] " = " (y + 12) "
___________________________________________________
Note: The above explanation is relevant to confirm that the equation is, in fact, in "proper form"; to ensure that the: radius, "r" ; is: "17" .
___________________________________________________
→ Since: "r = 17 " ;
→ The radius is: " 17 " ;
which is: Answer choice: [D]: "17" .
___________________________________________________
Answer:
13.98 in²
Step-by-step explanation:
I don't understand it, either.
Point N is part of a "segment" that above and to the right of chord MO. It is the sum of the areas of 3/4 of the circle and a right triangle with 7-inch sides. The larger segment MO to the upper right of chord MO has an area of about 139.95 in², which <u>is not</u> an answer choice.
__
The remaining segment, to the lower left of chord MO does not seem to have anything to do with point N. However, its area is 13.98 in², which <u>is</u> an answer choice. Therefore, we think the question is about this segment, and we wonder why it is called MNO.
The area of a segment is given by the formula ...
A = (1/2)(θ -sin(θ))r² . . . . . . where θ is the central angle in radians.
Here, we have θ = π/2, r = 7 in, so we can compute the area of the smaller segment MO as ...
A = (1/2)(π/2 -sin(π/2))(7 in)² = 24.5(π/2 -1) in² ≈ 13.9845 in²
Rounded to hundredths, this is ...
≈ 13.98 in²