1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
posledela
3 years ago
7

How does fecal coliform get into the water?

Advanced Placement (AP)
1 answer:
Oksana_A [137]3 years ago
8 0

Answer:

Fecal contamination can arise from sources such as combined sewer overflows, leaking septic tanks, sewer malfunctions, contaminated storm drains, animal feedlots, and other sources. ... coli may be washed into creeks, rivers, streams, lakes, or ground water

Explanation:

You might be interested in
The following statements about selecting and storing vegetables are false rewrite them to make them to write your response in th
lora16 [44]

Answer:

the company has a field goal of the next three to three companies that you will see in the blank space and climate changes that have been created for the next three years and are not yet clear yet they will be more efficient

5 0
3 years ago
Not even gonna lie I'm kinda really stupid so these next 5 questions are really hard for me and i would GREATLY appreciate it if
Marizza181 [45]

Answer:

1.) x = 5

2.) n = 0

3.) m = 5

4.) r = -8 or r = 8

5.) x = 10 or x = -53/5

Explanation:

1.) -37 + 4x = -7x -6(x - 8)

-37 + 4x = -7x - 6x + 48           Multiply -6(x - 8)

-37 + 4x = -13x + 48                 Combine like terms

4x = -13x + 85                          Add 37 to both sides

17x = 85                                   Add 13x to both sides

<u>x = 5                                         </u><u>Divide both sides by 17</u>

<u />

2.) 3(2n + 7) = -7(-3 + 5n) - 7n

6n + 21 = 21 -35n - 7n             Multiply 3(2n + 7) and -7(-3 + 5n)

6n + 21 = 21 - 42n                   Combine like terms

6n = -42n                                Subtract 21 from both sides

48n = 0                                   Add 42n to both sides

<u>n = 0 </u><u>                                      Divide both sides by 48</u>

<u />

3.) 1 - 8m = -9 - 6m

-8m = -6m - 10                        Subtract 1 from both sides

-2m = -10                                 Add 6m to both sides

<u>m = 5</u><u>                                       Divide both sides by -2</u>

<u />

4.) |r/8| = 1

If the lines mean absolute value, 8/8 equals 1; When you take the <u>absolute value of -8/8, it becomes 8/8 with equates to 1.</u>

<u />

5.) | 10x + 3| = 103

|10x| = 100                                Subtract 3 from both sides

x = 10                                       Divide both sides by 10

OR

<em>Apply absolute rule: If |u | = a; a > 0 then u = a or u = -a</em>

10x + 3 = -103

10x = -106                                Subtract 3 from both sides

x = -10.6                                  Divide both sides by 10

(-10.6 is -53/5 as a fraction)

<em>To check:</em>

-53 ÷ 5 = -10.6, multiply that by 10 to get -106. Add 3; -103. Then take the absolute value of that: 103.

Hope this helps,

♥<em>A.W.E.</em><u><em>S.W.A.N.</em></u>♥

6 0
4 years ago
Solve the following differential equation with initial conditions: y''=e^-2t+10e^4t ; y(0)=1, y'(0)=0​
skad [1K]

Answer:

Option A.  y = \frac{1}{4} e^{-2t} + \frac{5}{8} e^{4t} - 2 t + \frac{1}{8}

Explanation:

This is a second order DE, so we'll need to integrate twice, applying initial conditions as we go.  At a couple points, we'll need to apply u-substitution.

<u>Round 1:</u>

To solve the differential equation, write it as differentials, move the differential, and integrate both sides:

y''=e^{-2t}+10e^{4t}

\frac{dy'}{dt}=e^{-2t}+10e^{4t}

dy'=[e^{-2t}+10e^{4t}]dt

\int dy'=\int [e^{-2t}+10e^{4t}]dt

Applying various properties of integration:

\int dy'=\int e^{-2t} dt + \int 10e^{4t}dt\\\int dy'=\int e^{-2t} dt + 10\int e^{4t}dt

Prepare for integration by u-substitution

\int dy'=\int e^{u_1} dt + 10\int e^{u_2}dt, letting u_1=-2t and u_2=4t

Find dt in terms of u_1 \text{ and } u_2

u_1=-2t\\du_1=-2dt\\-\frac{1}{2}du_1=dt     u_2=4t\\du_2=4dt\\\frac{1}{4}du_2=dt

\int dy'=\int e^{u_1} dt + 10\int e^{u_2}dt\\\int dy'=\int e^{u_1} (-\frac{1}{2} du_1) + 10\int e^{u_2}  (\frac{1}{4} du_2)\\\int dy'=-\frac{1}{2} \int e^{u_1} (du_1) + 10 *\frac{1}{4} \int e^{u_2}  (du_2)

Using the Exponential rule (don't forget your constant of integration):

y'=-\frac{1}{2} e^{u_1} + 10 *\frac{1}{4}e^{u_2} +C_1

Back substituting for u_1 \text{ and } u_2:

y'=-\frac{1}{2} e^{(-2t)} + 10 *\frac{1}{4}e^{(4t)} +C_1\\y'=-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} +C_1\\

<u>Finding the constant of integration</u>

Given initial condition  y'(0)=0

y'(t)=-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} +C_1\\0=y'(0)=-\frac{1}{2} e^{-2(0)} + \frac{5}{2}e^{4(0)} +C_1\\0=-\frac{1}{2} (1) + \frac{5}{2}(1) +C_1\\-2=C_1\\

The first derivative with the initial condition applied: y'(t)=-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} -2\\

<u>Round 2:</u>

Integrate again:

y' =-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} -2\\\frac{dy}{dt} =-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} -2\\dy =[-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} -2]dt\\\int dy =\int [-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} -2]dt\\\int dy =\int -\frac{1}{2} e^{-2t} dt + \int \frac{5}{2}e^{4t} dt - \int 2 dt\\\int dy = -\frac{1}{2} \int e^{-2t} dt + \frac{5}{2} \int e^{4t} dt - 2 \int dt\\

y = -\frac{1}{2} * -\frac{1}{2} e^{-2t} + \frac{5}{2} * \frac{1}{4} e^{4t} - 2 t + C_2\\y(t) = \frac{1}{4} e^{-2t} + \frac{5}{8} e^{4t} - 2 t + C_2

<u />

<u>Finding the constant of integration :</u>

Given initial condition  y(0)=1

1=y(0) = \frac{1}{4} e^{-2(0)} + \frac{5}{8} e^{4(0)} - 2 (0) + C_2\\1 = \frac{1}{4} (1) + \frac{5}{8} (1) - (0) + C_2\\1 = \frac{7}{8} + C_2\\\frac{1}{8}=C_2

So, y(t) = \frac{1}{4} e^{-2t} + \frac{5}{8} e^{4t} - 2 t + \frac{1}{8}

<u>Checking the solution</u>

y(t) = \frac{1}{4} e^{-2t} + \frac{5}{8} e^{4t} - 2 t + \frac{1}{8}

This matches our initial conditions here y(0) = \frac{1}{4} e^{-2(0)} + \frac{5}{8} e^{4(0)} - 2 (0) + \frac{1}{8} = 1

Going back to the function, differentiate:

y' = [\frac{1}{4} e^{-2t} + \frac{5}{8} e^{4t} - 2 t + \frac{1}{8}]'\\y' = [\frac{1}{4} e^{-2t}]' + [\frac{5}{8} e^{4t}]' - [2 t]' + [\frac{1}{8}]'\\y' = \frac{1}{4} [e^{-2t}]' + \frac{5}{8} [e^{4t}]' - 2 [t]' + [\frac{1}{8}]'

Apply Exponential rule and chain rule, then power rule

y' = \frac{1}{4} e^{-2t}[-2t]' + \frac{5}{8} e^{4t}[4t]' - 2 [t]' + [\frac{1}{8}]'\\y' = \frac{1}{4} e^{-2t}(-2) + \frac{5}{8} e^{4t}(4) - 2 (1) + (0)\\y' = -\frac{1}{2} e^{-2t} + \frac{5}{2} e^{4t} - 2

This matches our first order step and the initial conditions there.

y'(0) = -\frac{1}{2} e^{-2(0)} + \frac{5}{2} e^{4(0)} - 2=0

Going back to the function y', differentiate:

y' = -\frac{1}{2} e^{-2t} + \frac{5}{2} e^{4t} - 2\\y'' = [-\frac{1}{2} e^{-2t} + \frac{5}{2} e^{4t} - 2]'\\y'' = [-\frac{1}{2} e^{-2t}]' + [\frac{5}{2} e^{4t}]' - [2]'\\y'' = -\frac{1}{2} [e^{-2t}]' + \frac{5}{2} [e^{4t}]' - [2]'

Applying the Exponential rule and chain rule, then power rule

y'' = -\frac{1}{2} e^{-2t}[-2t]' + \frac{5}{2} e^{4t}[4t]' - [2]'\\y'' = -\frac{1}{2} e^{-2t}(-2) + \frac{5}{2} e^{4t}(4) - (0)\\y'' = e^{-2t} + 10 e^{4t}

So our proposed solution is a solution to the differential equation, and satisfies the initial conditions given.

7 0
2 years ago
When two neurons are activated at the same time, the connection between them will increase; this is called
charle [14.2K]
When two neurons are activated at the same time, the connection between them will increase; this is called long-term potentiation. 
3 0
3 years ago
The best way to gain a basic understanding of each school before the college fair is to:
denpristay [2]

I think the answer you want will be A.

8 0
3 years ago
Read 2 more answers
Other questions:
  • What is the “Consumer’s Bill of Rights?”
    12·1 answer
  • Solve for x. Then find the length of each side of the figure.
    6·2 answers
  • What process renders high-level programming code into usable code for the CPU?
    8·2 answers
  • Which would most help a student improve school performance, use time effectively, and decrease stress?
    15·2 answers
  • What are the quilts of Gee's Bend, a community in Alabama, acclaimed for?
    9·2 answers
  • Which enlightenment idea is reflected in the declaration of independence?
    12·1 answer
  • Which of the following best describes the data presented in the image?
    14·1 answer
  • What is leptin and how does it affect weight and hunger?
    10·1 answer
  • 48:21
    5·1 answer
  • Robinson Crusoe happily lives by himself on a little island eating shrimp and mangos. He is able to
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!