Answer:
3848.45mm
Step-by-step explanation:
Area = ![\pi r^{2}](https://tex.z-dn.net/?f=%5Cpi%20r%5E%7B2%7D)
= 1225
1225 *
= 3848.45
Answer:
3x+2y+2=0
3x=-2y-2
x=-(2y+2)/3
Step-by-step explanation:
Answer:
The pairs are (13,15) and (-15,-13).
Step-by-step explanation:
If n is an odd integer, the very next odd integer will be n+2.
n+1 is even (so we aren't using this number)
The sum of the squares of (n) and (n+2) is 394.
This means
(n)^2+(n+2)^2=394
n^2+(n+2)(n+2)=394
n^2+n^2+4n+4=394 since (a+b)(a+b)=a^2+2ab+b^2
Combine like terms:
2n^2+4n+4=394
Subtract 394 on both sides:
2n^2+4n-390=0
Divide both sides by 2:
n^2+2n-195=0
Now we need to find two numbers that multiply to be -195 and add up to be 2.
15 and -13 since 15(-13)=-195 and 15+(-13)=2
So the factored form is
(n+15)(n-13)=0
This means we have n+15=0 and n-13=0 to solve.
n+15=0
Subtract 15 on both sides:
n=-15
n-13=0
Add 13 on both sides:
n=13
So if n=13 , then n+2=15.
If n=-15, then n+2=-13.
Let's check both results
(n,n+2)=(13,15)
13^2+15^2=169+225=394. So (13,15) looks good!
(n,n+2)=(-15,-13)
(-15)^2+(-13)^2=225+169=394. So (-15,-13) looks good!
Answer:
The value of a + 2z/ 2 in terms of a is (3a+4)/2
Step-by-step explanation:
least of 3 consecutive integers is a, and the greatest is z
if a is the least one
we know that integers differ by value of 1.
example -2, -1, 0, 1,2
they all differ by
then next consecutive integer will be a+1
third integer will be second integer +1 = a+1 + 1 = a+2
Thus, 3 consecutive integer
a , a+1, a+2
but given that greatest is z
thus, a+2 is greatest and hence
a+2 = z
we have to find value of a + 2z/ 2 in terms of a
a + 2z/ 2 = a + 2(a+2)/2 = (a+ 2a +4)/2 = (3a+4)/2.
The value of a + 2z/ 2 in terms of a is (3a+4)/2
A. ratio of areas = 2^2 /5^2 = 4/25
B 14^2 : 1 = 196:1
C. ratio of perimeters would be sqrt81 = 9 times