Answer:

Step-by-step explanation:
The formula for the length of a vector/line in your case.
![L = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2} = \sqrt{[4 - (-1)]^2 + [2 -(-3)]^2} = \sqrt{5^2 + 5^2} = \sqrt{50} = 5\sqrt{2}](https://tex.z-dn.net/?f=L%20%3D%20%5Csqrt%7B%28x_2-x_1%29%5E2%20%2B%20%28y_2-y_1%29%5E2%7D%20%3D%20%5Csqrt%7B%5B4%20-%20%28-1%29%5D%5E2%20%2B%20%5B2%20-%28-3%29%5D%5E2%7D%20%3D%20%5Csqrt%7B5%5E2%20%2B%205%5E2%7D%20%3D%20%5Csqrt%7B50%7D%20%3D%205%5Csqrt%7B2%7D)
Answer:
the formula is (n-2)180 degrees
so its 7020
Answer:
C
Step-by-step explanation:
Calculate AC using Pythagoras' identity in ΔABC
AC² = 20² - 12² = 400 - 144 = 256, hence
AC =
= 16
Now find AD² from ΔACD and ΔABD
ΔACD → AD² = 16² - (20 - x)² = 256 - 400 + 40x - x²
ΔABD → AD² = 12² - x² = 144 - x²
Equate both equations for AD², hence
256 - 400 + 40x - x² = 144 - x²
-144 + 40x - x² = 144 - x² ( add x² to both sides )
- 144 + 40x = 144 ( add 144 to both sides )
40x = 288 ( divide both sides by 40 )
x = 7.2 → C
I believe its 4 we haven't really went over it
Answer:
(b) 1
Step-by-step explanation:
To differentiate
we will need the product rule:
.
We have
, so the following equation is true by the transitive property:

By subtraction property we have:

Since
, then we can divide both sides by
:


This implies
is constant.
So we have that
where
is a real number.
Since
and
, then by transitive property
.
So
.
Checking:


So the following conditions were met.