The statement that -6 is in the domain of f(g(x)) is true
<h3>Complete question</h3>
If f(x) = -2x + 8 and g(x) =
, which statement is true?
- -6 is in the domain of f(g(x))
- -6 is not in the domain of f(g(x))
<h3>How to determine the true statement?</h3>
We have:
f(x) = -2x + 8

Start by calculating the function f(g(x)) using:
f(g(x)) = -2g(x) + 8
Substitute 

Set the radicand to at least 0

Subtract 9 from both sides

This means that the domain of f(g(x)) are real numbers greater than or equal to -9. i.e. -9, -8, -7, -6, ...........
Hence, the statement that -6 is in the domain of f(g(x)) is true
Read more about domain at:
brainly.com/question/24539784
#SPJ1
Hope this helps you 3y=54-2
First, find 30% of 2,000. To do so you need to convert 30% into a decimal by dividing it by 100.
30% ⇒ 0.30
Now multiply 0.30 by 2,000 to find 30% of 2,000.
2,000 × 0.30 = 600
Subtract 600 from 2,000 to find the price of the notebook in 2013.
2,000 - 600 = 1,400
Now find 30% of 1,400 using the same process.
1,400 × 0.30 = 420
Subtract 420 from 1,400 to find the price of the notebook in 2014.
1,400 - 420 = 980
<h2>Answer:</h2>
<u>The value of the notebook in 2014 is </u><u>$980</u><u>.</u>
67°C
89°C
Dont quote me on this but I am almost 100 percent sure about it
Answer:
4217
Step-by-step explanation:
7.07(10^2)+3.51(10^3)
(7.07)(100)+3.51(10^3)
707+3.51(10^3)
707+(3.51)(1000)
707+3510
4217