Answer:
3rd box, last box, 2nd box, 5th box in that order
Step-by-step explanation:
PEMDAS
Answer:
y-8+3y+12
4y+4
Step-by-step explanation:
y-8+3y+12
4y+4 is your answer
The function g(x) is a translation to the right of 3 units and up 2 units of f(x), so the correct option is B.
<h3>Which statement is true regarding the vertical and horizontal translations from f(x) to g(x)?</h3>
For a given function f(x), we can write a vertical translation of n units as:
g(x) = f(x) + n
- If n < 0, the translation is downwards.
- if n > 0, the translation is upwards.
And a horizontal translation of n units as:
g(x) = f(x + n).
- if n > 0, the translation is to the left.
- if n < 0, the translation is to the right.
Here we have:
f(x) = (2/3)*x
g(x) = (2/3)*(x - 3) + 2
By comparing it with the general translations, we conclude that we have a traslation of 3 units to the right and 2 units up.
So the correct option is B.
If you want to learn more about translations:
brainly.com/question/24850937
#SPJ1
Answer:
No
Step-by-step explanation:
A rational number is a number that can be expressed as a fraction p/q where p and q are integers and q!=0. A rational number p/q is said to have numerator p and denominator q. Numbers that are not rational are called irrational numbers. The real line consists of the union of the rational and irrational numbers. The set of rational numbers is of measure zero on the real line, so it is "small" compared to the irrationals and the continuum.
The set of all rational numbers is referred to as the "rationals," and forms a field that is denoted Q. Here, the symbol Q derives from the German word Quotient, which can be translated as "ratio," and first appeared in Bourbaki's Algèbre (reprinted as Bourbaki 1998, p. 671).
Any rational number is trivially also an algebraic number.
Examples of rational numbers include -7, 0, 1, 1/2, 22/7, 12345/67, and so on. Farey sequences provide a way of systematically enumerating all rational numbers.
The set of rational numbers is denoted Rationals in the Wolfram Language, and a number x can be tested to see if it is rational using the command Element[x, Rationals].
The elementary algebraic operations for combining rational numbers are exactly the same as for combining fractions.
It is always possible to find another rational number between any two members of the set of rationals. Therefore, rather counterintuitively, the rational numbers are a continuous set, but at the same time countable.
The addition property of equality. It says that if you add the same number to each side of the equation, the two sides of the equation will be equal. In this case, the number 8 was added to each side.
Hope this helps :)