Let's actually find the line of best fit...
m=(nΣyx-ΣyΣx)/(nΣx^2-ΣxΣx)
m=(11*836-130*55)/(11*385-3025)
m=2046/1210
m=93/55
b=(Σy-93Σx/55)/n
b=(55Σy-93Σx)/(55n)
b=(7150-5115)/(55*11)
b=185/55, so the line of best fit is:
y=(93x+185)/55
A) The approximate y-intercept (the value of y when x=0) is 185/55≈3.36.
Which means that those who do not practice at all will win about 3.36 times
B) y(13)=(93x+185)/55
y(13)≈25.34
So after 13 months of practice one would expect to win about 25.34 times.
Answer:
<h2>b = 15°</h2>
Step-by-step explanation:
If Pq = RQ then ΔPQR is the isosceles triangle. The angles QPR and PRQ have the same measures.
We know: The sum of the measures of the angeles in the triangle is equal 180°. Therefore we have the equation:
m∠QPR + m∠PRQ + m∠RQP = 180°
We have
m∠QPR = m∠PRQ and m∠RQP = 60°
Therefore
2(m∠QPR) + 60° = 180° <em>subtract 60° from both sides</em>
2(m∠QPR) = 120° <em>divide both sides by 2</em>
m∠QPR = 60° and m∠PRQ = 60°
Therefore ΔPRQ is equaliteral.
ΔPSR is isosceles. Therefore ∠SPR and ∠PRS are congruent. Therefore
m∠SPR = m∠PRS
In ΔAPS we have:
m∠SPR + m∠PRS + m∠RSP = 180°
2(m∠SPR) + 90° = 180° <em>subtract 90° from both sides</em>
2(m∠SPR) = 90° <em>divide both sides by 2</em>
m∠SPR = 45° and m∠PRS = 45°
m∠PRQ = m∠PRS + b
Susbtitute:
60° = 45° + b <em>subtract 45° from both sides</em>
15° = b
Answer:300,000
Step-by-step explanation: if the 4 was a 5 or higher then the answer would’ve been 400,00 but since the number next to the underlined digit is 4 then it goes to 300,00. (4 or below leave it alone 5 or above give it a shove)
Hi there! I haven't done math in a while but I do well and I hope this helps. First, we get our radius from our area, which is about 4 inches. From there, I used the volume formula and got the answer closest to C, or 267.95. Thanks, good luck :)