Ann wants to choose from two telephone plans. Plan A involves a fixed charge of $10 per month and call charges at $0.10 per minute. Plan B involves a fixed charge of $15 per month and call charges at $0.08 per minute.
Plan A $10 + .10/minute
Plan B $15 + .08/minute
If 250 minutes are used:
Plan A: $10+$25=$35
Plan B: $15+$20=$35
If 400 minutes are used:
Plan A: $10+$40=$50
Plan B: $15+$32=$47
B is the correct answer. How to test it:
Plan A: $10+(.10*249 minutes)
$10+$24.9=$34.9
Plan B: $15+(.08*249 minutes)
$15+$19.92=$34.92
Plan A < Plan B if less than 250 minutes are used.
Area of a parallelogram=base x heigth
Data:
base=(2x+3)
heigth=(ax+5)
area of this parallelogram=8x²+bx+15
Therefore:
8x²+bx+15=(2x+3)(ax+5)
8x²+bx+15=2ax²+10x+3ax+15
8x²+bx+15=2ax²+(10+3a)x+15
Then:
8x²=2ax²
a=(8x²)/(2x²)=4
bx=(10+3(4))x
bx=(10+12)x
b=22x/x=22
Answer: a=4 and b=22.
Answer:
x=7
Step-by-step explanation:
3(x+2) = 6x-15.
3x+6 = 6x-15
3x = 6x-21
-3x = -21
x = 7
Replace x with 0.5
3+4(0.5)-2(0.5)
Now multiply
3+2-1
5-1
Answer: 4