A River Oaks Pools is trying to calculate the perimeter of the pool so they will know how many bricks to buy for the deck of the pool. Each square on the grid represents a square that is 3ft x 3ft. What is the perimeter of the pool?
Solution:
On the first row and last row, there are 7 numbers of squares. And on the 2nd to 5th row, there are 11 number of squares.
In getting for the perimeter of the area, we'll have to divide the regions.
Dividing the regions, we'll get three figures/planes :
2 rectangles with Length = 3ft x 4 number of squares and Width = 3ft x 2 number of squares
Thus, for the 2 rectangles,
Perimeter = 2(2L+2W) (times two since there are 2 rectangles)
Perimeter = 2(2(12)+2(6))
Perimeter = 72 ft
Another figure was formed is a square with a 21ft x 21ft
Perimeter = 4(21ft)
Perimeter = 84 ft
Add the two equivalent perimeters:
Total Perimeter = 72+84
Total Perimeter = 156 ft
Basically, Benedict's test identifies the existence of aldehydes and alpha-hydroxy-ketones, also by hemiacetal, as well as those that take place in specific ketoses. Therefore, it is an alpha-hydroxy-ketone even if the ketose fructose is not strictly a reducing sugar, and provides a positive test since it is transformed into the mannose and aldoses glucose by the base inside the reagent.
The probability that the proportion of patients who wait less than 30 minutes is 0.582 or less is 0.0020
<h3>What is probability? </h3>
Probability can be defined as the likelihood of an event to occur. In statistics, the mean of the sample distribution typically shows the probability of the population.
From the parameters given:
- The sample size (n) = 55 patients
- Let's assume that the mean (x) = 32 (i.e. 58.2%) of the patients
The sample proportion
can be computed by using the expression:



If the percentage of the probability of all patients in the emergency room = 0.75
The probability that the proportion of patients who wait less than 30 minutes is 0.582 or less can be computed as:



From the Z distribution table:


Learn more about probability here:
brainly.com/question/24756209
Answer:
The answer is A: Yes, all conditions have been met.
Random: Stated
Independent: None of the samples are greater then 10 percent of total population
Normal: n>30 so its assumed to be normal.
Sample sizes don't have to be the same unless it is a Matched pair test.
Explanation: