Answer:
5 electron groups, see saw
Explanation:
During the formation of SF4, the sulfur atom usually bonds with each of four fluorine atoms where 8 of valence electrons are used. The four fluorine atoms have 3 lone pairs of electrons in its octet which will further utilize 24 valence electrons. In addition, two electrons are present as a lone pair on the sulfur atom. We can determine sulfur’s hybridization state by counting of the number of regions of electron density on sulphur (the central atom in the molecule). When bonding takes place there is a formation of 4 single bonds to sulfur and it has 1 lone pair. Looking at this, we can say that the number of regions of electron density is 5. The hybridization state is sp3d.
SF4 molecular geometry is seesaw with one pair of valence electrons. The molecule is polar. The equatorial fluorine atoms have 102° bond angles instead of the actual 120° angle. The axial fluorine atom angle is 173° instead of the actual 180° bond angle.
Most animals obtain their nutrients by the consumption of other organisms. At the cellular level, the biological molecules necessary for animal function are amino acids, lipid molecules, nucleotides, and simple sugars. However, the food consumed consists of protein, fat, and complex carbohydrates.
If 5.0 grams of KCl is dissolved in 500 ml of water, the concentration of the resulting solution will be 0.134M.
<h3>How to calculate concentration?</h3>
The concentration of a solution can be calculated by using the following formula;
Molarity = no of moles ÷ volume
According to this question, 5.0 grams of KCl is dissolved in 500 ml of water. The concentration is calculated as follows:
no of moles of KCl = 5g ÷ 74.5g/mol = 0.067mol
Molarity = 0.067mol ÷ 0.5L = 0.134M
Therefore, if 5.0 grams of KCl is dissolved in 500 ml of water, the concentration of the resulting solution will be 0.134M.
Learn more about concentration at: brainly.com/question/10725862
#SPJ1
A balance in a lab measures the weight of a substance or object.
Weight is the mass of the body x the gravitation pull on the mass of the object.
So the mass of the object can be found by dividing the weight by gravitational constant.
The gravitational constant on earth is 1. so if a balance says that a substance weighs 300g then its mass is also 300g on earth because 300/1 = 300.
Hope that helps :)