<u>Solution-</u>
The two parabolas are,

By solving the above two equations we calculate where the two parabolas meet,

Given the symmetry, the area bounded by the two parabolas is twice the area bounded by either parabola with the x-axis.
![\therefore Area=2\int_{-c}^{c}y.dx= 2\int_{-c}^{c}(16x^2-c^2).dx\\=2[\frac{16}{3}x^3-c^2x]_{-c}^{ \ c}=2[(\frac{16}{3}c^3-c^3)-(-\frac{16}{3}c^3+c^3)]=2[\frac{32}{3}c^3-2c^3]=2(\frac{26c^3}{3})\\=\frac{52c^3}{3}](https://tex.z-dn.net/?f=%5Ctherefore%20Area%3D2%5Cint_%7B-c%7D%5E%7Bc%7Dy.dx%3D%202%5Cint_%7B-c%7D%5E%7Bc%7D%2816x%5E2-c%5E2%29.dx%5C%5C%3D2%5B%5Cfrac%7B16%7D%7B3%7Dx%5E3-c%5E2x%5D_%7B-c%7D%5E%7B%20%5C%20c%7D%3D2%5B%28%5Cfrac%7B16%7D%7B3%7Dc%5E3-c%5E3%29-%28-%5Cfrac%7B16%7D%7B3%7Dc%5E3%2Bc%5E3%29%5D%3D2%5B%5Cfrac%7B32%7D%7B3%7Dc%5E3-2c%5E3%5D%3D2%28%5Cfrac%7B26c%5E3%7D%7B3%7D%29%5C%5C%3D%5Cfrac%7B52c%5E3%7D%7B3%7D)
![So \frac{52c^3}{3}=\frac{250}{3}\Rightarrow c=\sqrt[3]{\frac{250}{52}}=1.68](https://tex.z-dn.net/?f=So%20%5Cfrac%7B52c%5E3%7D%7B3%7D%3D%5Cfrac%7B250%7D%7B3%7D%5CRightarrow%20c%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B250%7D%7B52%7D%7D%3D1.68)
Answer:
0.267
Step-by-step explanation:
0.2666666666666667
Answer: i don’t understand the question... are you asking what eacg of them mean?
Step-by-step explanation:
Answer:
I need more information to solve this problem
Answer:
3:5
Step-by-step explanation:
Radius is distance from center to a point on the outer edge. Thus, circle A has a radius of 3 and circle B has a radius of 5