Answer:
the probability of no defects in 10 feet of steel = 0.1353
Step-by-step explanation:
GIven that:
A roll of steel is manufactured on a processing line. The anticipated number of defects in a 10-foot segment of this roll is two.
Let consider β to be the average value for defecting
So;
β = 2
Assuming Y to be the random variable which signifies the anticipated number of defects in a 10-foot segment of this roll.
Thus, y follows a poisson distribution as number of defect is infinite with the average value of β = 2
i.e

the probability mass function can be represented as follows:

where;
y = 0,1,2,3 ...
Hence, the probability of no defects in 10 feet of steel
y = 0


P(y =0) = 0.1353
1st you add up all the marbles so we got 15 so the answe will be out of 15 then next we add up nhe number of yellow and purple marbles 5+3= 8 so the answe will be 8/15
It is 39^2 or 1521, not sure which one you want.
Complementary angles equal 90°
So 90-36= 54°
Here is how we get the answer....
First, replace f(x) with y . ...
Replace every x with a y and replace every y with an x .
Solve the equation from Step 2 for y . ...
Replace y with f−1(x) f − 1 ( x ) . ...
Verify your work by checking that (f∘f−1)(x)=x ( f ∘ f − 1 ) ( x ) = x and (f−1∘f)(x)=x ( f − 1 ∘ f ) ( x ) = x are both true.