Answer: P = $ 1,998.01
Step-by-step explanation:
First, converting R percent to r a decimal
r = R/100 = 24%/100 = 0.24 per year,
putting time into years for simplicity,
1 months ÷ 12 months/year = 0.083333 years,
then, solving our equation
P = 39.96 / ( 0.24 × 0.083333 ) = 1998.007992032
P = $ 1,998.01
The principal required to
accumulate interest of $ 39.96
on a rate of 24% per year for 0.083333 years (1 months) is $ 1,998.01.
Answer:
a = 19
Step-by-step explanation:
-2(a + 3) = -4a + 32
-2a - 6 = -4a +32
<u> +2a +2a </u>
-6 = -2a + 32
<u>-32 -32</u>
-38 = -2a
divide by -2
<u><em>a = 19</em></u>
Must do multiplication first....
-2/5 - 3/7 x 7/10
-2/5 - 21/70 (I'll reduce 21/70)
-2/5 - 3/10
Now you have to find a common denominator and subtract
-35/50 = -7/10......is what I get
Answer: cos(x)
Step-by-step explanation:
We have
sin ( x + y ) = sin(x)*cos(y) + cos(x)*sin(y) (1) and
cos ( x + y ) = cos(x)*cos(y) - sin(x)*sin(y) (2)
From eq. (1)
if x = y
sin ( x + x ) = sin(x)*cos(x) + cos(x)*sin(x) ⇒ sin(2x) = 2sin(x)cos(x)
From eq. 2
If x = y
cos ( x + x ) = cos(x)*cos(x) - sin(x)*sin(x) ⇒ cos²(x) - sin²(x)
cos (2x) = cos²(x) - sin²(x)
Hence:The expression:
cos(2x) cos(x) + sin(2x) sin(x) (3)
Subtition of sin(2x) and cos(2x) in eq. 3
[cos²(x)-sin²(x)]*cos(x) + [(2sen(x)cos(x)]*sin(x)
and operating
cos³(x) - sin²(x)cos(x) + 2sin²(x)cos(x) = cos³(x) + sin²(x)cos(x)
cos (x) [ cos²(x) + sin²(x) ] = cos(x)
since cos²(x) + sin²(x) = 1
Answer:
8 times larger
Step-by-step explanation:
4 ·
= 4 · 10 · 10 · <u>10</u> · <u>10</u> · <em>10</em> · <em>10</em> · 10
4 · 100 · <u>100</u> · <em>100</em> · 10
400 · 10000 · 10
= 40000000
5 ·
= 5 · 10 · 10 · <u>10</u> · <u>10</u> · 10
50 · 100 · <u>100</u> · 10
5000 · 1000
= 5000000
40000000 ÷ 5000000 = 8