Answer:

Step-by-step explanation:
Given that the figure is made up of portion of a square and a semicircle, we have;
BC ≅ AB = 6 cm
The area of semicircle BC with radius BC/2 = 3 is 1/2×π×r² = 1/2×π×3² = 4.5·π cm²
Triangle ABC = 1/2 × Area of square from which ABC is cut
The area of triangle ABC = 1/2×Base ×Height = 1/2×AB×BC = 1/2×6×6 = 18 cm²
The area of the figure = The area of semicircle BC + The area of triangle ABC
The area of the figure = 4.5·π cm² + 18 cm² =
.
Answer:
i think it is 180
Step-by-step explanation:
because 180 is the total degrees of a triangle
Answer:
We know that the equation of the circle in standard form is equal to <em>(x-h)² + (y-k)² = r²</em> where (h,k) is the center of the circle and r is the radius of the circle.
We have x² + y² + 8x + 22y + 37 = 0, let's get to the standard form :
1 - We first group terms with the same variable :
(x²+8x) + (y²+22y) + 37 = 0
2 - We then move the constant to the opposite side of the equation (don't forget to change the sign !)
(x²+8x) + (y²+22y) = - 37
3 - Do you recall the quadratic identities ? (a+b)² = a² + 2ab + b². Now that's what we are trying to find. We call this process <u><em>"completing the square"</em></u>.
x²+8x = (x²+8x + 4²) - 4² = (x+4)² - 4²
y²+22y = (y²+22y+11²)-11² = (y+11)²-11²
4 - We plug the new values inside our equation :
(x+4)² - 4² + (y+22)² - 11² = -37
(x+4)² + (y+22)² = -37+4²+11²
(x+4)²+(y+22)² = 100
5 - We re-write in standard form :
(x-(-4)²)² + (y - (-22))² = 10²
And now it is easy to identify h and k, h = -4 and k = - 22 and the radius r equal 10. You can now complete the sentence :)
In short, (h o g)(a) is just h( g(a) ).
so what we can do is simply get g(a) first and then plug that in h(x).
The two shorter sides of triangle are 9 and 12. what is a possible length to make length of the third side to make the triangle acute with acuteT