The measure of the side
is approximately 33 and the measure of angle
is approximately 12.321°.
<h3>How to find a missing angle in a triangle by law of sine and law of cosine</h3>
In this problem we must apply the law of cosine and the law of sine to determine the angle Y:
<h3>Law of cosine</h3>
![x = \sqrt{y^{2}+z^{2}-2\cdot y\cdot z\cdot \cos X}](https://tex.z-dn.net/?f=x%20%3D%20%5Csqrt%7By%5E%7B2%7D%2Bz%5E%7B2%7D-2%5Ccdot%20y%5Ccdot%20z%5Ccdot%20%5Ccos%20X%7D)
![x = \sqrt{15^{2}+19^{2}-2\cdot (15)\cdot (19)\cdot \cos 152^{\circ}}](https://tex.z-dn.net/?f=x%20%3D%20%5Csqrt%7B15%5E%7B2%7D%2B19%5E%7B2%7D-2%5Ccdot%20%2815%29%5Ccdot%20%2819%29%5Ccdot%20%5Ccos%20152%5E%7B%5Ccirc%7D%7D)
![x \approx 33](https://tex.z-dn.net/?f=x%20%5Capprox%2033)
<h3>Law of sine</h3>
![\frac{\sin Y}{y} = \frac{\sin X}{x}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csin%20Y%7D%7By%7D%20%3D%20%5Cfrac%7B%5Csin%20X%7D%7Bx%7D)
![Y = \sin^{-1}\left(\frac{y}{x}\cdot \sin X \right)](https://tex.z-dn.net/?f=Y%20%3D%20%5Csin%5E%7B-1%7D%5Cleft%28%5Cfrac%7By%7D%7Bx%7D%5Ccdot%20%5Csin%20X%20%5Cright%29)
![Y = \sin^{-1}\left(\frac{15}{33}\cdot \sin 152^{\circ} \right)](https://tex.z-dn.net/?f=Y%20%3D%20%5Csin%5E%7B-1%7D%5Cleft%28%5Cfrac%7B15%7D%7B33%7D%5Ccdot%20%5Csin%20152%5E%7B%5Ccirc%7D%20%5Cright%29)
![Y \approx 12.321^{\circ}](https://tex.z-dn.net/?f=Y%20%5Capprox%2012.321%5E%7B%5Ccirc%7D)
The measure of the side
is approximately 33 and the measure of angle
is approximately 12.321°. ![\blacksquare](https://tex.z-dn.net/?f=%5Cblacksquare)
To learn more on triangles, we kindly invite to check this verified question: brainly.com/question/25813512
x+y=17000 (x.7+y.15)/100=2000 (7x+7y)+8y=200000. 8y=200000-17000.7 y=61.5.5.5 17000-y=9375=x x=9375
A^2-3a+14 is the answer :)