Answer:
P(G) = 0.55
the probability of getting an offspring pea that is green. Is 0.55.
Is the result reasonably close to the value of three fourths that was expected?
No
Expected P(G)= three fourths = 3/4 = 0.75
Estimated P(G) = 0.55
Estimated P(G) is not reasonably close to 0.75
Step-by-step explanation:
Given;
Number of green peas offspring
G = 450
Number of yellow peas offspring
Y = 371
Total number of peas offspring
T = 450+371 = 821
the probability of getting an offspring pea that is green is;
P(G) = Number of green peas offspring/Total number of peas offspring
P(G) = G/T
Substituting the values;
P(G) = 450/821
P(G) = 0.548112058465
P(G) = 0.55
the probability of getting an offspring pea that is green. Is 0.55.
Is the result reasonably close to the value of three fourths that was expected?
No
Expected P(G)= three fourths = 3/4 = 0.75
Estimated P(G) = 0.55
Estimated P(G) is not reasonably close to 0.75
Irrational, because if you simplify the root V72=6V2
Answer:

Step-by-step explanation:
For this case we need a line parallel to the plane x z and yz. And by definition of parallel we see that the intersection between the xz and yz plane is the z axis. And we can take the following unitary vector to construct the parametric equations:

Or any factor of u but for simplicity let's take the unitary vector.
Then the parametric equations are given by:



Where the point given 
And then since we have everything we can replace like this:




Step 1: simplify both sides of the equation.
Step 2: Flip the equation.
Step 3: Subtract 8 from both sides.
Step 4: Multiply both sides by5.
Answer: Y= 35
Https://photomath.net/s/rRVj6K