1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oksanka [162]
3 years ago
6

Two groups of friends go to a basketball game. Each group plans to share snacks. The first group buys 5 drinks and 6 pretzels fo

r 28$. The second group buys 2 drinks and 4 pretzels for 16$. Creat two equations in standard form you can use to solve this system​
Mathematics
1 answer:
tatuchka [14]3 years ago
3 0

Answer:

the price for one pretzel was $1.75

Step-by-step explanation:

d for drinks

p for pretzel

3d + 3p = 9

3d = 9 -3p

d = 3 - p

replace d = 3 - 9 into 4d + 2p = 8.5

4d + 2p = 8.5

4(3 - p) + 2p = 8.5

12 - 4p + 2p = 8.5

-2p = 8.5 - 12

-2p = -3.5

p = 1.75

You might be interested in
Felicia drew the pictures at the right to show 3/8 is greater than 3/4. What was Felicia’s mistake?
Alborosie
To show equality with fractions both fractions should be converted to show their values with the same denominator then draw a picture of those fractions.

Remember that you can only compare fractions with the same denominator as is said with other operations dealing with fractions.
8 0
4 years ago
Sharon manages the Spirit Supply store at Lakefield Middle School. She tracks the sale of various items in her inventory so that
Airida [17]
Here is a graph. I hope it helped :)

7 0
4 years ago
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
Jandi has 9 kittens. 3 are pure black. 2 are black and white. One is pure white. How many kittens to total are not one of the na
Nadusha1986 [10]

First you add 3 and 2 so that is 5 and then you subtract 5 from 9 so the answer is 4.

4 0
4 years ago
PLEASE HELP!!!!! ILL MARK YOU BRAINLIEST .......>
posledela
A (0,3)  B(1,-5) C(4,-1) D(0,-6)
4 0
3 years ago
Read 2 more answers
Other questions:
  • For the following geometric sequence find the explicit formula: {-1, 3, -9,...}
    14·2 answers
  • Use the divergence theorem to calculate the surface integral s f · ds; that is, calculate the flux of f across s. f(x, y, z) = x
    5·1 answer
  • sam has a jar that contains 6 blue marbles and 5 violet marbles. he randomly draws one marble and then draws another marble .Wha
    11·1 answer
  • Find x. Assume that segments that appear tangent are tangent.
    7·1 answer
  • Why is 24.625 irrational
    15·1 answer
  • 31.75 rounded to the nearest tenths
    6·1 answer
  • Please help with at least 1 question. I’m really stressed
    8·2 answers
  • Two parallel lines are crossed by a transversal. Horizontal and parallel lines b and c are cut by transversal a. At the intersec
    10·2 answers
  • Which circle represents 60% in blue?
    15·2 answers
  • What is the answer for number 2?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!