Responder:
26,62
Explicación paso a paso:
Sea x el dinero original que tenía el jugador:
si un jugador pierde en su primer juego el 30% de su dinero, la cantidad perdida será;

Si en el segundo juego pierde el 50% de lo que perdió, entonces la cantidad perdida en el segundo juego será:

Si en el tercer juego pierde el 40% de todo lo que ha perdido, la cantidad perdida en el tercer juego será:

Si la cantidad que le queda para seguir apostando es de 37 soles, entonces para calcular la cantidad original que tiene, sumaremos toda la cantidad perdida y la cantidad restante y equipararemos la cantidad original x como se muestra:
0,3x + 0,15x + 0,2025x + 37 = x
0,6525x + 37 = x
x-0,6525x = 37
0,3475x = 37
x = 37 / 0,3475
x = 106,48
La cantidad que tenía originalmente era de 106,48
75% de 106,48
= 75/100 * 106,48
= 0,75 * 106,48
= 79,86
Tomando la diferencia entre su monto original y su 75% será:

Answer:
Distance from point AA to point BB = 189.3 feet
Step-by-step explanation:
Let the distance from point AA to the base of the lighthouse be represented by x, and the distance from point BB to the base of the lighthouse be represented by y. So that;
distance from point AA to point BB = x - y
To determine the value of x, applying the required trigonometric function;
Tan θ = 
Tan 13 = 
x = 
= 441.81 feet
x = 441.8 feet
To determine the value of y;
Tan 22 = 
y = 
= 252.46
y = 252.5 feet
Thus,
distance from point AA to point BB = 441.8 - 252.5
= 189.3 feet
A complex mathematical topic, the asymptotic behavior of sequences of random variables, or the behavior of indefinitely long sequences of random variables, has significant ramifications for the statistical analysis of data from large samples.
The asymptotic behavior of the sample estimators of the eigenvalues and eigenvectors of covariance matrices is examined in this claim. This work focuses on limited sample size scenarios where the number of accessible observations is comparable in magnitude to the observation dimension rather than usual high sample-size asymptotic .
Under the presumption that both the sample size and the observation dimension go to infinity while their quotient converges to a positive value, the asymptotic behavior of the conventional sample estimates is examined using methods from random matrix theory.
Closed form asymptotic expressions of these estimators are obtained, demonstrating the inconsistency of the conventional sample estimators in these asymptotic conditions, assuming that an asymptotic eigenvalue splitting condition is satisfied.
To learn more about asymptotic behavior visit:brainly.com/question/17767511
#SPJ4
Answer:
see explanation
Step-by-step explanation:
The n th term of a geometric sequence is
= a
where a is the first term and r the common ratio
Given
=
and r =
, then
a
=
, that is
= 
=
( cross- multiply )
32a = 2048 ( divide both sides by 32 )
a = 64 ← first term
Thus the explicit formula is
= 64 
Take 156, divide by 13 and the multiply by 12. It is 144