Serous membrane is a thin membrane with two layers that lines and covers the wall and organs of the thoracic and abdominopelvic cavities, these organs includes the heart, lungs and the body cavity. Its role is to prevent friction between the organ and the body cavity wall. The membrane is formed by simple squamous epithelium which are filled with connective tissues.
Explanation:
During glycolysis, enzymes act on the substrate, glucose. Glycolysis occurs in the cytoplasm; here, 2 molecules of ATP are used to cleave glucose into 2 pyruvates, 4 ATP and 2 electron carrying NADH molecules.
Further Explanation:
In all eukaryotic cells mitochondria are small cellular organelles bound by membranes, these make most of the chemical energy required for powering the biochemical reactions within the cell. This chemical energy is stored within the molecule ATP which is produced. Respiration in the mitochondria utilizes oxygen for the production of ATP in the Krebs’ or Citric acid cycle via the oxidization of pyruvate( through the process of glycolysis in the cytoplasm).
overall: C6H12O6 (glucose) + 6 O2 → 6 CO2 + 6 H2O + ≈38 ATP
Oxidative phosphorylation describes a process in which the NADH and FADH2 made in previous steps of respiration process give up electrons in the electron transport chain these are converted it to their previous forms, NADH+ and FAD. Electrons continue to move down the chain the energy they release is used in pumping protons out of the matrix of the mitochondria.
This forms a gradient where there is a differential in the number of protons on either side of the membrane the protons flow or re-enter the matrix through the enzyme ATP synthase, which makes the energy storage molecules of ATP from the reduction of ADP. At the end of the electron transport, three molecules of oxygen accept electrons and protons to form molecules of water...
- Glycolysis: occurs in the cytoplasm 2 molecules of ATP are used to cleave glucose into 2 pyruvates, 4 ATP and 2 electron carrying NADH molecules.
- The Kreb's cycle: in the mitochondrial matrix- 6 molecules of CO2 are produced by combining oxygen and the carbon within pyruvate, 2 ATP oxygen molecules, 8 NADH and 2 FADH2.
- The electron transport chain, ETC: in the inner mitochondrial membrane, 34 ATP, electrons combine with H+ split from 10 NADH, 4 FADH2, renewing the number of electron acceptors and 3 oxygen; this forms 6 H2O, 10 NAD+, 4 FAD.
Learn more about cellular life at brainly.com/question/11259903
Learn more about cellular respiration at brainly.com/question/11203046
#LearnWithBrainly
Answer:
Cell membrane of prokaryotes and Inner mitochondria of eukaryotes
Explanation:
Electron transport chain is a part of oxidative phosphorylation which is the third step of aerobic cellular respiration in living organisms. The ETC is a complex of proteins and mobile electron carriers. It occurs when electron is being transferred from one electron carrier to another, starting from NADH and FADH2. A proton pump which is used to synthesize ATP is generated at the end.
This ETC process occurs in the cell membrane of prokaryotic cells due to the fact that they lack a membrane-bound Mitochondrion. ETC occurs in the inner membrane of the mitochondria called CRISTAE in eukaryotic cells.
For the answer to the question above, <span>I think the answer is that Density-independent because it is an abiotic factor which is a natural phenomenon that occurs in the environment, it also affects the limiting factors of the environment.
</span><span>I hope this helps.
</span>
Answer: SECONDARY CELL WALL.
Explanation: When cell wall grow,it becomes thickened,then it further deposits new layers of a different material (different from that of the primary cell wall) from where secondary cell wall is formed.
This secondary cell wall is made up of cellulose,hemicellulose,and lignin.
They function in providing additional strength,support, rigidity to cells and the larger plant.