Answer:
Step-by-step explanation:
R=Q
P=2Q+R/R
P=2R+R/R
P=3R/R
P=3
Note the binomial expansion,
(<em>a</em> + 1/<em>a</em>)³ = <em>a</em> ³ + 3<em>a</em> + 3/<em>a</em> + 1/<em>a</em> ³
so
<em>a</em> ³ + 1/<em>a</em> ³ = (<em>a</em> + 1/<em>a</em>)³ - 3 (<em>a</em> + 1/<em>a</em>)
Similarly,
(<em>a</em> + 1/<em>a</em>)² = <em>a</em> ² + 2 + 1/<em>a</em> ²
We're given <em>a</em> ² + 1/<em>a</em> ² = 79, so
(<em>a</em> + 1/<em>a</em>)² - 2 = 79
(<em>a</em> + 1/<em>a</em>)² = 81
<em>a</em> + 1/<em>a</em> = ±9
but <em>a</em> > 0, so we ignore the negative solution.
Then
<em>a</em> ³ + 1/<em>a</em> ³ = 9³ - 3×9 = 702
Answer:
I don't know
Step-by-step explanation:
Because you are in college and that's what it says!!
Take

so that you have

which gives a Jacobian determinant of

So upon transforming the coordinates to the u-v plane, you have (and I'm guessing on what the integrand actually is)
