Solutions
First Lets solve for this equation
Therefore this given equation is a <span>dependent system.
</span>
<span>Solve for </span>
There are too many solutions to these equations.
Answer:
ab=bc because b devide ac in two equal sizes
ac=ab+bc
ac=2×ab
ac =2×bc
lets substitute ac and bc there we are given
x+3=2(3x-1)
x+3=6x-2
-5x/-5=-5/-5
x=1
ab=3(1)-1
ab=2
Answer:
40%
Step-by-step explanation:
20% + 20% = 40%
Hope this helps!
Answer:
a) x=(t^2)/2+cos(t), b) x=2+3e^(-2t), c) x=(1/2)sin(2t)
Step-by-step explanation:
Let's solve by separating variables:

a) x’=t–sin(t), x(0)=1

Apply integral both sides:

where k is a constant due to integration. With x(0)=1, substitute:

Finally:

b) x’+2x=4; x(0)=5

Completing the integral:

Solving the operator:

Using algebra, it becomes explicit:

With x(0)=5, substitute:

Finally:

c) x’’+4x=0; x(0)=0; x’(0)=1
Let
be the solution for the equation, then:

Substituting these equations in <em>c)</em>

This becomes the solution <em>m=α±βi</em> where <em>α=0</em> and <em>β=2</em>
![x=e^{\alpha t}[Asin\beta t+Bcos\beta t]\\\\x=e^{0}[Asin((2)t)+Bcos((2)t)]\\\\x=Asin((2)t)+Bcos((2)t)](https://tex.z-dn.net/?f=x%3De%5E%7B%5Calpha%20t%7D%5BAsin%5Cbeta%20t%2BBcos%5Cbeta%20t%5D%5C%5C%5C%5Cx%3De%5E%7B0%7D%5BAsin%28%282%29t%29%2BBcos%28%282%29t%29%5D%5C%5C%5C%5Cx%3DAsin%28%282%29t%29%2BBcos%28%282%29t%29)
Where <em>A</em> and <em>B</em> are constants. With x(0)=0; x’(0)=1:

Finally:

15 / 20 = 0.75. The answer is 0.75