Answer:
Step-by-step explanation:
five times a number increased by nine is
5x+9
x is the unknown number being multiplied by 5
increase= add
so add by 9
Solving for each equation:
A: True.
![\frac{n}{2} +3 *4 = \frac{n}{2}+12\\\\\frac{n}{2} + 12 = \frac{n}{2} + 12](https://tex.z-dn.net/?f=%5Cfrac%7Bn%7D%7B2%7D%20%2B3%20%2A4%20%3D%20%5Cfrac%7Bn%7D%7B2%7D%2B12%5C%5C%5C%5C%5Cfrac%7Bn%7D%7B2%7D%20%2B%2012%20%3D%20%5Cfrac%7Bn%7D%7B2%7D%20%2B%2012)
B: False.
![\frac{1}{3}z+\frac{2}{3}z * 9 = 9z\\\\\frac{1}{3} z+6z = 9z](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B3%7Dz%2B%5Cfrac%7B2%7D%7B3%7Dz%20%2A%209%20%3D%209z%5C%5C%5C%5C%5Cfrac%7B1%7D%7B3%7D%20z%2B6z%20%3D%209z)
C: True, given that y = 1
![-8y +4.3y + 3.7 = 0\\\\-3.7y = -3.7](https://tex.z-dn.net/?f=-8y%20%2B4.3y%20%2B%203.7%20%3D%200%5C%5C%5C%5C-3.7y%20%3D%20-3.7)
D: True, given that b = 6.66667
![12-1.8b+1.8b=1.8b\\12 = 1.8b](https://tex.z-dn.net/?f=12-1.8b%2B1.8b%3D1.8b%5C%5C12%20%3D%201.8b)
E: True.
![\frac{m}{8} + 7(\frac{m}{8} ) =m\\\\\frac{m}{8} + (\frac{7m}{8} )= m\\\\\\\frac{8m}{8} = m\\](https://tex.z-dn.net/?f=%5Cfrac%7Bm%7D%7B8%7D%20%2B%207%28%5Cfrac%7Bm%7D%7B8%7D%20%29%20%3Dm%5C%5C%5C%5C%5Cfrac%7Bm%7D%7B8%7D%20%2B%20%28%5Cfrac%7B7m%7D%7B8%7D%20%29%3D%20m%5C%5C%5C%5C%5C%5C%5Cfrac%7B8m%7D%7B8%7D%20%3D%20m%5C%5C)
Answer:
1.) ![=\frac{\sqrt{3}}{3}](https://tex.z-dn.net/?f=%3D%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B3%7D)
2.) ![42\sqrt{30}](https://tex.z-dn.net/?f=42%5Csqrt%7B30%7D)
Step-by-step explanation:
1.) ![\mathrm{Multiply\:by\:the\:conjugate}\:\frac{\sqrt{3}}{\sqrt{3}}](https://tex.z-dn.net/?f=%5Cmathrm%7BMultiply%5C%3Aby%5C%3Athe%5C%3Aconjugate%7D%5C%3A%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B%5Csqrt%7B3%7D%7D)
2.) ![\mathrm{Apply\:radical\:rule}:\quad \sqrt{a}\sqrt{b}=\sqrt{a\cdot b}](https://tex.z-dn.net/?f=%5Cmathrm%7BApply%5C%3Aradical%5C%3Arule%7D%3A%5Cquad%20%5Csqrt%7Ba%7D%5Csqrt%7Bb%7D%3D%5Csqrt%7Ba%5Ccdot%20b%7D)
![\sqrt{6}\sqrt{5}=\sqrt{6\cdot \:5}](https://tex.z-dn.net/?f=%5Csqrt%7B6%7D%5Csqrt%7B5%7D%3D%5Csqrt%7B6%5Ccdot%20%5C%3A5%7D)
To solve this problem, we must figure out what percent of the total spending was spent on mommy and baby exercise programs. To figure this out, we should divide how much was spent on the mommy and baby exercise by the total amount spent on the district activities.
$1430/$5720 = 0.25
This is a percentage, or a portion out of 100, which means we must multiply this decimal by 100 to find its equivalent percentage.
0.25 * 100 = 25
Therefore, your answer is 25% of the total spending was spent on mommy and baby exercise programs.
Hope this helps!