6b(3-2)
is the answer for your question
bearing in mind that perpendicular lines have negative reciprocal slopes, let's find the slope of the provided line then
![\bf y=\stackrel{\stackrel{m}{\downarrow }}{-15}x+3\qquad \impliedby \begin{array}{|c|ll} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20y%3D%5Cstackrel%7B%5Cstackrel%7Bm%7D%7B%5Cdownarrow%20%7D%7D%7B-15%7Dx%2B3%5Cqquad%20%5Cimpliedby%20%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20slope-intercept~form%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20y%3D%5Cunderset%7By-intercept%7D%7B%5Cstackrel%7Bslope%5Cqquad%20%7D%7B%5Cstackrel%7B%5Cdownarrow%20%7D%7Bm%7Dx%2B%5Cunderset%7B%5Cuparrow%20%7D%7Bb%7D%7D%7D%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

well, we know the x-intercept is at x = 3, recall when a graph intercepts the x-axis y = 0, so this point is (3 , 0). Then we're really looking for the equation of a line whose slope is 1/5 and runs through (3 , 0).

Answer: B, C, A, A, D
Step-by-step explanation:
Answer:
C
Step-by-step explanation:
44/70 which is about 0.063 Hope this helps :D Please mark brainliest
Im not sure about this question but- 120% of 800 equals- 15%, so 15% could be the answer