Answer:
a) Then minimum sample size is n = 12
b) We got 245 successes
c)p-value is greater than 0,01 Therefore we accept H₀.
We can´t support our claim
Step-by-step explanation:
a) The minimum population size required to use the approximation of binomial distribution to normal distribution can be obtained from:
n*p > 5 p = 0,45 0,45 * n > 5 n > 11
Then minimum sample size is n = 12
b) We got 245 successes out of n = 500
x = 245 p = 245/500 p = 0,49
q = 1 - p q = 1 - 0,49 q = 0,51
Test Hypothesis:
Null Hypothesis H₀ p = 0,45
Alternative Hypothesis Hₐ p > 0,45
Alternative Hypothesis indicates that the test is a one tail test to the right
z( s) = ( p - 0,45 ) / √ p*q/n
z( s) = ( 0,49 - 0,45 ) / √ 0,49*0,51 / 500
z( s) = 0,04 / 0,0223
z(s) = 1,793
p- value for z = 1.79 is from z-table p-value = 0,0367
Comparing p-value with the significance level 0,01 we see that
p-value is greater than 0,01 Therefore we accept H₀.
We can´t support our claim