The answer to your question is A.
The sum of cubes is given as:
a³ + b³ = (a + b)(a² - ab + b²)
Example for the sum of cubes:
64x³+y³ ⇒ This is the sum of cubes because each term; 64, x³, and y³ are cube numbers
By writing each term as an expression of cube numbers, we have:
(4x)³ + (y)³ ⇒ 64 is 4³
Use the factorization of the sum of cubes, we have:
(4x + y) ( (4x)²- 4xy + y²)
(4x + y) (16x² - 4xy + y²)
--------------------------------------------------------------------------------------------------------------
The difference of cubes can be factorized as:
(x³ - y³) = (x - y)(x² + xy + y²)
Example
(125x³ - 8y³) = (5x - 2y) ((5x)² + (5x)(2y) + (2y)²)
= (5x - 2y) (25x² + 10xy + 4y²)
Answer:
Step-by-step explanation:
ohfpifpijpijsfpjspijpsijfpsjfpsjfpisjfpijsfpsijf
To make something smaller and easier
Answer:
-30x^2-9x+12 all real numbers
Step-by-step explanation:
f(x) = -6x + 3 and g(x) = 5x + 4
f(x) * g(x) = (-6x + 3) * ( 5x + 4)
FOIL
= -30x^2 -24x+15x +12
Combine like terms
=-30x^2-9x+12
The domain is what numbers x can take
There are no restrictions so all real numbers