Answer:
3 add 1013 hay so youre welcome hoop
Step-by-step explanation:
just add it up
Answer:
the unit cost per rubber tile is $$$$$$$$$$$$$6
Step-by-step explanation:
..
The two-sided alternative hypothesis is appropriate in this case, the reason being we are asked "does the data indicate that the average body temperature for healthy humans is different from 98.6◦........?".
The test statistic is:

Using an inverse normal table, and halving

for a two-tailed test, we look up

and find the critical value to be Z = 2.5758.
Comparing the test statistic Z = -5.47 with the rejection region Z < -2.5758 and Z > 2.5758. we find the test statistic lies in the rejection region. Therefore the evidence does not indicate that the average body temperature for healthy humans is different from 98.6◦.
Answer:
(a) 283 days
(b) 248 days
Step-by-step explanation:
The complete question is:
The pregnancy length in days for a population of new mothers can be approximated by a normal distribution with a mean of 268 days and a standard deviation of 12 days. (a) What is the minimum pregnancy length that can be in the top 11% of pregnancy lengths? (b) What is the maximum pregnancy length that can be in the bottom 5% of pregnancy lengths?
Solution:
The random variable <em>X</em> can be defined as the pregnancy length in days.
Then, from the provided information
.
(a)
The minimum pregnancy length that can be in the top 11% of pregnancy lengths implies that:
P (X > x) = 0.11
⇒ P (Z > z) = 0.11
⇒ <em>z</em> = 1.23
Compute the value of <em>x</em> as follows:

Thus, the minimum pregnancy length that can be in the top 11% of pregnancy lengths is 283 days.
(b)
The maximum pregnancy length that can be in the bottom 5% of pregnancy lengths implies that:
P (X < x) = 0.05
⇒ P (Z < z) = 0.05
⇒ <em>z</em> = -1.645
Compute the value of <em>x</em> as follows:

Thus, the maximum pregnancy length that can be in the bottom 5% of pregnancy lengths is 248 days.