1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vikentia [17]
3 years ago
8

Ayuda por favor :)

Mathematics
1 answer:
Alex3 years ago
5 0

Answer:

X=90-22

X=68 is the answer

You might be interested in
Explain why you think it is or is not possible to give the exact length of the circumference as a decimal.
Naddik [55]

Answer:

It is not possible.

Step-by-step explanation:

How exact is exact? Since the circumference of a circle depends on pi, you have to discuss the nature of pi. C = pi * the diameter.  

You are getting to a place where the air is pretty thin when you start dealing with pi. Pi has an infinite number of digits associated with it. Not only that, but if I were to tell you what the 100th digit was, you would have a random chance of figuring out what the 99th digit was or the 101 digit should be, that's only to the hundredth digit. The circumference would go beyond what we can measure with the thousandth digit.

In addition, pi is an irrational number. That means it cannot be represented by any kind of a fraction.


8 0
4 years ago
What is the 3 digit number of the ones period in 288,322,170
AnnZ [28]

Answer:

170

The ones period consists of the ones, tens, and hundreds digits.

6 0
4 years ago
Let z=3+i, <br>then find<br> a. Z²<br>b. |Z| <br>c.<img src="https://tex.z-dn.net/?f=%5Csqrt%7BZ%7D" id="TexFormula1" title="\sq
zysi [14]

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

3 0
3 years ago
Read 2 more answers
A bag contains 35 marbles, 11 of which are red. A marble is randomly selected from the bag, and it is blue. This blue marble is
Ilia_Sergeevich [38]

Answer:

11 red + 24 blue = 35 marbles

If 1 blue is withdrawn

11 red + 23 blue = 34 marbles

P = 23 / 34 = .38   probability of drawing blue marble

6 0
3 years ago
Steffie makes a scale drawing for a crate with the demensions 15 inches long by 12 inches wide. Her scale factor is 1:3. Brian m
rodikova [14]

Answer:

Dimensions → (5 inches × 4 inches)

Step-by-step explanation:

Scale factor used for the drawing by Steffie = \frac{1}{3}

Since, scale factor = \frac{\text{Dimension of the drawing}}{\text{Actual dimension}}

For Steffie,

Actual length of the crate = \frac{\text{Dimension of the drawing}}{\text{Scale factor}}

                                           = \frac{15}{\frac{1}{3}}

                                           = 45 inches

Actual width of the crate = \frac{12}{\frac{1}{3} }

                                         = 36 inches

Since Brian used the scale factor = \frac{1}{9}

Length of the drawing = Actual length × Scale factor

                                     = 45 × \frac{1}{9}

                                    = 5 inches

Width of the drawing = Actual width × Scale factor

                                   = 36 × \frac{1}{9}

                                   = 4 inches

Therefore, dimensions of the drawing made by Brian are (5 inches × 4 inches)

6 0
3 years ago
Other questions:
  • Clover the Clown charges $49.50 for a private party event and $55.25 for a community event. He did 4 private party events and 3
    11·1 answer
  • Solve the equation<br><br> - 9x – 2y=-12<br> 2x+5y=-11<br><br> X=<br> Y=
    8·1 answer
  • What is the mean of the set of numbers? {–8, –4, –3, –11}
    10·1 answer
  • Find two numbers between 1.4142133 and 1.41422
    13·1 answer
  • John wants to find the perimeter of a square with side length 2p - 5. Write two expressions that represent the perimeter, includ
    7·2 answers
  • Round 58800 to the nearest cent
    14·1 answer
  • Find f(2) for the function below f(x)=1/8 times 5^x
    15·1 answer
  • Which of the following describes a linear association?
    15·1 answer
  • Please help I need the answer fast !
    15·1 answer
  • Choose the best decimal representation for<br> 8/11
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!