1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
evablogger [386]
3 years ago
9

PLEASE HELP! all u have to do is determine if it is positive or negative!

Mathematics
2 answers:
iris [78.8K]3 years ago
8 0
The answer is negative
solniwko [45]3 years ago
5 0

Answer:

I think it is positive.

Step-by-step explanation:

Iam soory if Iam wrong.

You might be interested in
A consulting firm submitted a bid for a large research project. The firm’s management
amid [387]

Answer:

(a) 0.50

(b) 0.75

(c) 0.6522

Step-by-step explanation:

We are given that the firm’s management  initially had a 50–50 chance of getting the project.

Let Probability of getting a project or bid being successful, P(S) = 0.50

Probability of not getting a project or bid being unsuccessful, P(US) = 1 - 0.50 = 0.50

Also, Past  experience indicates that for 75% of the successful bids and 40% of the unsuccessful bids  the agency requested additional information which means;

Let event R = agency requested additional information

So, Probability that the agency requested additional information given the bid was successful, P(R/S) = 0.75

Probability that the agency requested additional information given the bid was unsuccessful, P(R/US) = 0.40

(a) Prior probability of the bid being successful = Probability of getting a project or bid being successful = \frac{50}{100} = 0.50

(b) The conditional probability of a request for additional information given that  the bid will ultimately be successful = P(R/S) = 0.75

(c) The posterior probability that the bid will be successful given a request for  additional information is given by P(S/R) ;

Using Bayes' Theorem for this we get;

   P(S/R) = \frac{P(S) * P(R/S)}{P(S)*P(R/S) + P(US) * P(R/US)} = \frac{0.50 * 0.75}{0.50*0.75 + 0.50*0.40} = 0.6522 .

6 0
3 years ago
I need help please ❤️❤️❤️❤️❤️
postnew [5]

Answer:

m1=51

m2=18

m3=123

m4=39

Step-by-step explanation:

6 0
3 years ago
The area of a rectangle with a width of 3 units and a height of 4 units is 12 square units
Ivan

Answer: True

I believe

Step-by-step explanation:

you multiply 3x4=12

8 0
3 years ago
-3 1/6 divide by (-2 1/3)
marshall27 [118]

Answer:

1 5/14

Step-by-step explanation:

-3 1/6 / -2 1/3

-3 1/6 = -19/6

-2 1/3 = -7/3

-19/6 / -7/3 = -19/6 x -3/7

-19 x -3 = 57

-6 x -7 = 42

57/42 = 1 5/14

6 0
3 years ago
Area of the bounded curves y=x^2, y=√(7+x)
N76 [4]

Answer:

\displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 5.74773

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Area of a Region Formula:                                                                                     \displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle \left \{ {{y = x^2} \atop {y = \sqrt{7 + x}}} \right.

<u>Step 2: Identify</u>

<em>Graph the systems of equations - see attachment.</em>

Top Function:  \displaystyle y = \sqrt{7 + x}

Bottom Function:  \displaystyle y = x^2

Bounds of Integration: [-1.529, 1.718]

<u>Step 3: Integrate Pt. 1</u>

  1. Substitute in variables [Area of a Region Formula]:                                   \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - \int\limits^{1.718}_{-1.529} {x^2} \, dx
  3. [Right Integral] Integration Rule [Reverse Power Rule]:                             \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - \frac{x^3}{3} \bigg| \limits^{1.718}_{-1.529}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - 2.88176

<u>Step 4: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 7 + x
  2. [<em>u</em>] Basic Power Rule [Derivative Rule - Addition/Subtraction]:                 \displaystyle du = dx
  3. [Limits] Switch:                                                                                               \displaystyle \left \{ {{x = 1.718 ,\ u = 7 + 1.718 = 8.718} \atop {x = -1.529 ,\ u = 7 - 1.529 = 5.471}} \right.

<u>Step 5: Integrate Pt. 3</u>

  1. [Integral] U-Substitution:                                                                               \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{8.718}_{5.471} {\sqrt{u}} \, du - 2.88176
  2. [Integral] Integration Rule [Reverse Power Rule]:                                       \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = \frac{2x^\Big{\frac{3}{2}}}{3} \bigg| \limits^{8.718}_{5.471} - 2.88176
  3. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 8.62949 - 2.88176
  4. Simplify:                                                                                                         \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 5.74773

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

5 0
3 years ago
Other questions:
  • Help quickly please thank you
    10·2 answers
  • True or false? A scale that measures the mass in grams to two decimal places is more precise than a scale that measures the mass
    13·1 answer
  • What equations is equivalent to y = log x
    12·1 answer
  • A line segment is drawn from (+6, +4) to (+9, +4) on a coordinate grid.
    10·1 answer
  • Do anyone know what goes in these blanks
    9·2 answers
  • (SAT Prep) Find the value of x in each of the following exercises:
    12·1 answer
  • Helppp last question only (c). Maths
    8·1 answer
  • What is the volume of the pyramid in the diagram?<br> 25 cm<br> h = 15 cm<br> 15 cm<br> 20 cm
    8·2 answers
  • Can you answer this math homework? Please!
    10·1 answer
  • Tell whether the triangle with the given side lengths is a right triangle.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!