Answer:
Explain the circumstances for which the interquartile range is the preferred measure of dispersion
Interquartile range is preferred when the distribution of data is highly skewed (right or left skewed) and when we have the presence of outliers. Because under these conditions the sample variance and deviation can be biased estimators for the dispersion.
What is an advantage that the standard deviation has over the interquartile range?
The most important advantage is that the sample variance and deviation takes in count all the observations in order to calculate the statistic.
Step-by-step explanation:
Previous concepts
The interquartile range is defined as the difference between the upper quartile and the first quartile and is a measure of dispersion for a dataset.

The standard deviation is a measure of dispersion obatined from the sample variance and is given by:

Solution to the problem
Explain the circumstances for which the interquartile range is the preferred measure of dispersion
Interquartile range is preferred when the distribution of data is highly skewed (right or left skewed) and when we have the presence of outliers. Because under these conditions the sample variance and deviation can be biased estimators for the dispersion.
What is an advantage that the standard deviation has over the interquartile range?
The most important advantage is that the sample variance and deviation takes in count all the observations in order to calculate the statistic.
Answer:
0.1507 or 15.07%.
Step-by-step explanation:
We have been given that the manufacturing of a ball bearing is normally distributed with a mean diameter of 22 millimeters and a standard deviation of .016 millimeters. To be acceptable the diameter needs to be between 21.97 and 22.03 millimeters.
First of all, we will find z-scores for data points using z-score formula.
, where,
z = z-score,
x = Sample score,
= Mean,
= Standard deviation.



Let us find z-score of data point 22.03.



Using probability formula
, we will get:

Therefore, the probability that a randomly selected ball bearing will be acceptable is 0.1507 or 15.07%.
Answer:
See explanation and image attached
Step-by-step explanation:
Acceleration refers to the rate of change of speed with time. We can see that between 0 and 4.7 seconds he accelerated quickly . That means that the rate of change of speed with time was greatest between 0 and 4.7 seconds.
A graph of the motion is shown in the image attached. We can see that he maintained a constant speed after 4.7 seconds.
This isn't really mathematics but I can give you an answer.
Assuming, it's in the dark (cuz in the light, why would you use flash), a person in the photograph can gain a red-eye (in the photo).
The only one I can think of is red eye.