Answer:
43.8°
Step-by-step explanation:
Applying,
Cosine rule,
From the diagram attached,
x² = y²+z²-2yxcos∅.................... Equation 1
where ∅ = ∠YXZ
Given: x = 8.7 m, y = 10.4 m, z = 12.4 m
Substitute these values into equation 1
8.7² = 10.4²+12.4²-[2×10.4×12.4cos∅]
75.69 = (108.16+153.76)-(257.92cos∅)
75.69 = 261.92-257.92cos∅
collect like terms
257.92cos∅ = 261.92-75.69
257.92cos∅ = 186.23
Divide both sides by the coefficient of cos∅
cos∅ = 186.23/257.92
cos∅ = 0.722
Find the cos⁻¹ of both side.
∅ = cos⁻¹(0.7220)
∅ = 43.78°
∅ = 43.8°
Answer:
B is the only one that goes through the axis
Answer:
Area = πr², where "r" is some distance "y" and/or the function "(1/6)x"; depending on the situation
Step-by-step explanation:
If I'm picturing this correctly, you'll have conical shape after revolving the function about the x-axis. If you took some generic slice and wanted to find the area of the resulting cross-section, then you would have a circle whose radius is some arbitrary value of the line that matches the slice.
For example:
y = (1/6)x right?
If you took a slice at x = 2, then the radius of the resulting cross-sectional circle would be equal to y = (1/6)•2 =1/3.
From here you just plug it into the area of a circle, πr², to get an area of π/3.
Except with an integral you need to take all the points on the interval, so the radius comes out to be the function itself.
Assuming your integral is in terms of dx, r=y. But in order to integrate in terms of dx you must replace "y" with its function (1/6)x. So ultimately r=(1/6)x and Area = π(1/6)x.
I don’t really know BAT ST Y S(